Towards a Unified Benchmark and Framework for Deep Learning-Based Prediction of Nuclear Magnetic Resonance Chemical Shifts

Fanjie Xu, Wentao Guo, Feng Wang, Lin Yao, Hongshuai Wang, Fujie Tang, Zhifeng Gao, Linfeng Zhang, Weinan E, Zhong-Qun Tian, Jun Cheng
{"title":"Towards a Unified Benchmark and Framework for Deep Learning-Based Prediction of Nuclear Magnetic Resonance Chemical Shifts","authors":"Fanjie Xu, Wentao Guo, Feng Wang, Lin Yao, Hongshuai Wang, Fujie Tang, Zhifeng Gao, Linfeng Zhang, Weinan E, Zhong-Qun Tian, Jun Cheng","doi":"arxiv-2408.15681","DOIUrl":null,"url":null,"abstract":"The study of structure-spectrum relationships is essential for spectral\ninterpretation, impacting structural elucidation and material design.\nPredicting spectra from molecular structures is challenging due to their\ncomplex relationships. Herein, we introduce NMRNet, a deep learning framework\nusing the SE(3) Transformer for atomic environment modeling, following a\npre-training and fine-tuning paradigm. To support the evaluation of NMR\nchemical shift prediction models, we have established a comprehensive benchmark\nbased on previous research and databases, covering diverse chemical systems.\nApplying NMRNet to these benchmark datasets, we achieve state-of-the-art\nperformance in both liquid-state and solid-state NMR datasets, demonstrating\nits robustness and practical utility in real-world scenarios. This marks the\nfirst integration of solid and liquid state NMR within a unified model\narchitecture, highlighting the need for domainspecific handling of different\natomic environments. Our work sets a new standard for NMR prediction, advancing\ndeep learning applications in analytical and structural chemistry.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study of structure-spectrum relationships is essential for spectral interpretation, impacting structural elucidation and material design. Predicting spectra from molecular structures is challenging due to their complex relationships. Herein, we introduce NMRNet, a deep learning framework using the SE(3) Transformer for atomic environment modeling, following a pre-training and fine-tuning paradigm. To support the evaluation of NMR chemical shift prediction models, we have established a comprehensive benchmark based on previous research and databases, covering diverse chemical systems. Applying NMRNet to these benchmark datasets, we achieve state-of-the-art performance in both liquid-state and solid-state NMR datasets, demonstrating its robustness and practical utility in real-world scenarios. This marks the first integration of solid and liquid state NMR within a unified model architecture, highlighting the need for domainspecific handling of different atomic environments. Our work sets a new standard for NMR prediction, advancing deep learning applications in analytical and structural chemistry.
为基于深度学习的核磁共振化学位移预测建立统一基准和框架
由于分子结构关系复杂,从分子结构预测光谱具有挑战性。在此,我们介绍一种深度学习框架 NMRNet,它采用 SE(3) Transformer 进行原子环境建模,并遵循预训练和微调范式。为了支持核磁共振化学位移预测模型的评估,我们在以往研究和数据库的基础上建立了一个全面的基准,涵盖了多种化学体系。将 NMRNet 应用于这些基准数据集,我们在液态和固态核磁共振数据集上都取得了最先进的性能,证明了它在真实世界场景中的鲁棒性和实用性。这标志着在统一的模型架构中首次集成了固态和液态 NMR,凸显了特定领域处理不同原子环境的必要性。我们的工作为 NMR 预测设定了新标准,推动了分析和结构化学中的深度学习应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信