Reconciling Kubo and Keldysh Approaches to Fermi-Sea-Dependent Nonequilibrium Observables: Application to Spin Hall Current and Spin-Orbit Torque in Spintronics

Simao M. Joao, Marko D. Petrovic, J. M. Viana Parente Lopes, Aires Ferreira, Branislav K. Nikolic
{"title":"Reconciling Kubo and Keldysh Approaches to Fermi-Sea-Dependent Nonequilibrium Observables: Application to Spin Hall Current and Spin-Orbit Torque in Spintronics","authors":"Simao M. Joao, Marko D. Petrovic, J. M. Viana Parente Lopes, Aires Ferreira, Branislav K. Nikolic","doi":"arxiv-2408.16611","DOIUrl":null,"url":null,"abstract":"Quantum transport studies of spin-dependent phenomena in solids commonly\nemploy the Kubo or Keldysh formulas for the steady-state density matrix in the\nlinear-response regime. Its trace with operators of interest -- such as, spin\ndensity, spin current density or spin torque -- gives expectation values of\nexperimentally accessible observables. For such local quantities, these\nformulas require summing over the manifolds of {\\em both} Fermi-surface and\nFermi-sea quantum states. However, debates have been raging in the literature\nabout vastly different physics the two formulations can apparently produce,\neven when applied to the same system. Here, we revisit this problem using a\ntestbed of infinite-size graphene with proximity-induced spin-orbit and\nmagnetic exchange effects. By splitting this system into semi-infinite leads\nand central active region, in the spirit of Landauer two-terminal setup for\nquantum transport, we prove the {\\em numerically exact equivalence} of the Kubo\nand Keldysh approaches via the computation of spin Hall current density and\nspin-orbit torque in both clean and disordered limits. The key to reconciling\nthe two approaches are the numerical frameworks we develop for: ({\\em i})\nevaluation of Kubo(-Bastin) formula for a system attached to semi-infinite\nleads, which ensure continuous energy spectrum and evade the need for\nphenomenological broadening in prior calculations; and ({\\em ii}) proper\nevaluation of Fermi-sea term in the Keldysh approach, which {\\em must} include\nthe voltage drop across the central active region even if it is disorder free.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum transport studies of spin-dependent phenomena in solids commonly employ the Kubo or Keldysh formulas for the steady-state density matrix in the linear-response regime. Its trace with operators of interest -- such as, spin density, spin current density or spin torque -- gives expectation values of experimentally accessible observables. For such local quantities, these formulas require summing over the manifolds of {\em both} Fermi-surface and Fermi-sea quantum states. However, debates have been raging in the literature about vastly different physics the two formulations can apparently produce, even when applied to the same system. Here, we revisit this problem using a testbed of infinite-size graphene with proximity-induced spin-orbit and magnetic exchange effects. By splitting this system into semi-infinite leads and central active region, in the spirit of Landauer two-terminal setup for quantum transport, we prove the {\em numerically exact equivalence} of the Kubo and Keldysh approaches via the computation of spin Hall current density and spin-orbit torque in both clean and disordered limits. The key to reconciling the two approaches are the numerical frameworks we develop for: ({\em i}) evaluation of Kubo(-Bastin) formula for a system attached to semi-infinite leads, which ensure continuous energy spectrum and evade the need for phenomenological broadening in prior calculations; and ({\em ii}) proper evaluation of Fermi-sea term in the Keldysh approach, which {\em must} include the voltage drop across the central active region even if it is disorder free.
调和库勃法和凯尔迪什法的费米海洋非平衡观测值:自旋电子学中自旋霍尔电流和自旋轨道转矩的应用
对固体中自旋依赖现象的量子输运研究通常采用 Kubo 或 Keldysh 公式来计算线性响应机制中的稳态密度矩阵。它与感兴趣的算子--如自旋密度、自旋电流密度或自旋转矩--的迹线给出了可通过实验获得的观测值的期望值。对于这些局部量,这些公式需要在{(或两者}的流形上求和。费米面量子态和费米海量子态。然而,关于这两种公式即使应用于同一系统也能产生截然不同的物理结果的争论一直在文献中激烈进行。在这里,我们使用具有近距离诱导的自旋轨道和磁交换效应的无限大石墨烯试验台重新探讨了这个问题。本着量子输运的兰道尔双端设置的精神,我们把这个系统分成半无限导线和中心活性区,通过计算清洁和无序极限的自旋霍尔电流密度和自旋轨道力矩,证明了库博和凯尔迪什方法的{数值精确等价}。调和这两种方法的关键是我们开发的数值框架:({\em i})评估连接到半无限导线的系统的Kubo(-Bastin)公式,这确保了能谱的连续性,避免了先前计算中现象学展宽的需要;({\em ii})对Keldysh方法中的费米海项进行预评估,这{\em must}包括中心有源区的电压降,即使它是无序的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信