SympGNNs: Symplectic Graph Neural Networks for identifiying high-dimensional Hamiltonian systems and node classification

Alan John Varghese, Zhen Zhang, George Em Karniadakis
{"title":"SympGNNs: Symplectic Graph Neural Networks for identifiying high-dimensional Hamiltonian systems and node classification","authors":"Alan John Varghese, Zhen Zhang, George Em Karniadakis","doi":"arxiv-2408.16698","DOIUrl":null,"url":null,"abstract":"Existing neural network models to learn Hamiltonian systems, such as\nSympNets, although accurate in low-dimensions, struggle to learn the correct\ndynamics for high-dimensional many-body systems. Herein, we introduce\nSymplectic Graph Neural Networks (SympGNNs) that can effectively handle system\nidentification in high-dimensional Hamiltonian systems, as well as node\nclassification. SympGNNs combines symplectic maps with permutation\nequivariance, a property of graph neural networks. Specifically, we propose two\nvariants of SympGNNs: i) G-SympGNN and ii) LA-SympGNN, arising from different\nparameterizations of the kinetic and potential energy. We demonstrate the\ncapabilities of SympGNN on two physical examples: a 40-particle coupled\nHarmonic oscillator, and a 2000-particle molecular dynamics simulation in a\ntwo-dimensional Lennard-Jones potential. Furthermore, we demonstrate the\nperformance of SympGNN in the node classification task, achieving accuracy\ncomparable to the state-of-the-art. We also empirically show that SympGNN can\novercome the oversmoothing and heterophily problems, two key challenges in the\nfield of graph neural networks.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Existing neural network models to learn Hamiltonian systems, such as SympNets, although accurate in low-dimensions, struggle to learn the correct dynamics for high-dimensional many-body systems. Herein, we introduce Symplectic Graph Neural Networks (SympGNNs) that can effectively handle system identification in high-dimensional Hamiltonian systems, as well as node classification. SympGNNs combines symplectic maps with permutation equivariance, a property of graph neural networks. Specifically, we propose two variants of SympGNNs: i) G-SympGNN and ii) LA-SympGNN, arising from different parameterizations of the kinetic and potential energy. We demonstrate the capabilities of SympGNN on two physical examples: a 40-particle coupled Harmonic oscillator, and a 2000-particle molecular dynamics simulation in a two-dimensional Lennard-Jones potential. Furthermore, we demonstrate the performance of SympGNN in the node classification task, achieving accuracy comparable to the state-of-the-art. We also empirically show that SympGNN can overcome the oversmoothing and heterophily problems, two key challenges in the field of graph neural networks.
SympGNNs:用于识别高维哈密顿系统和节点分类的交映图神经网络
现有的学习哈密顿系统的神经网络模型,如对称图神经网络(SympNets),虽然在低维度上很精确,但在学习高维度多体系统的正确动力学方面却举步维艰。在此,我们引入了折衷图神经网络(SympGNNs),它能有效处理高维哈密顿系统中的系统识别以及节点分类。SympGNNs 将交折射图与图神经网络的特性--置换方差结合起来。具体来说,我们提出了 SympGNNs 的两个变体:i)G-SympGNN 和 ii)LA-SympGNN,它们产生于动能和势能的不同参数化。我们在两个物理例子中演示了 SympGNN 的能力:一个 40 粒子耦合谐振子和一个 2000 粒子分子动力学模拟的二维伦纳德-琼斯势。此外,我们还证明了 SympGNN 在节点分类任务中的性能,其准确性可与最先进的技术相媲美。我们还通过实证证明,SympGNN 可以克服图神经网络领域的两大关键难题--过度平滑和异性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信