Melatonin improves the postharvest anthracnose resistance of mango fruit by regulating antioxidant activity, the phenylpropane pathway and cell wall metabolism
{"title":"Melatonin improves the postharvest anthracnose resistance of mango fruit by regulating antioxidant activity, the phenylpropane pathway and cell wall metabolism","authors":"Dandan Lu, Yanfang Ren, Tengyu Yan, Xiangwei Jia, Haojie Xu, Boya Yang, Xinyu Zhang, Junyu He","doi":"10.1007/s10658-024-02930-0","DOIUrl":null,"url":null,"abstract":"<p>Anthracnose caused by <i>Colletotrichum gloeosporioides</i> is a major postharvest disease of mango. Melatonin (MT) is an endogenous plant hormone that plays a crucial role in both biotic and abiotic stress responses. The objective of this study was to explore the impact of MT treatment on anthracnose disease of “Tainong” mango fruit through both <i>in vivo</i> and <i>in vitro</i> experiments. <i>In vivo</i> tests showed that 0.2 mmol L<sup>−1</sup> MT clearly postponed the occurrence of anthracnose and effectively reduced the lesion diameter on inoculated mango fruit. However, <i>in vitro</i> tests showed that MT had no significant effects on mycelium growth and spore germination of <i>C. gloeosporioides</i>. Further <i>in vivo</i> analysis demonstrated that MT significantly increased the activities of enzymes involved in phenylpropanoid metabolism and pathogenesis related proteins, as well as the contents of flavonoids, anthocyanins, lignin and total phenols in mango fruit. MT treatment caused an obvious production in the initial hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and nitric oxide (NO) contents in inoculated mango fruit, while it decreased their content at later stages by enhancing the activities of antioxidant enzymes. Furthermore, MT significantly reduced the activity of cell-wall hydrolases and the soluble pectin content, and slowed down the loss of cellulose and protopectin. Principal constituent analysis (PCA) and correlation analysis showed that MT enhanced the resistance of mango fruit to <i>C. gloeosporioides</i> by enhancing defense enzyme activities and the contents of secondary metabolites and inhibiting pectin hydrolysis. In summary, MT can be an effective alternative to fungicides aimed at controlling postharvest anthracnose.</p>","PeriodicalId":12052,"journal":{"name":"European Journal of Plant Pathology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10658-024-02930-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Anthracnose caused by Colletotrichum gloeosporioides is a major postharvest disease of mango. Melatonin (MT) is an endogenous plant hormone that plays a crucial role in both biotic and abiotic stress responses. The objective of this study was to explore the impact of MT treatment on anthracnose disease of “Tainong” mango fruit through both in vivo and in vitro experiments. In vivo tests showed that 0.2 mmol L−1 MT clearly postponed the occurrence of anthracnose and effectively reduced the lesion diameter on inoculated mango fruit. However, in vitro tests showed that MT had no significant effects on mycelium growth and spore germination of C. gloeosporioides. Further in vivo analysis demonstrated that MT significantly increased the activities of enzymes involved in phenylpropanoid metabolism and pathogenesis related proteins, as well as the contents of flavonoids, anthocyanins, lignin and total phenols in mango fruit. MT treatment caused an obvious production in the initial hydrogen peroxide (H2O2) and nitric oxide (NO) contents in inoculated mango fruit, while it decreased their content at later stages by enhancing the activities of antioxidant enzymes. Furthermore, MT significantly reduced the activity of cell-wall hydrolases and the soluble pectin content, and slowed down the loss of cellulose and protopectin. Principal constituent analysis (PCA) and correlation analysis showed that MT enhanced the resistance of mango fruit to C. gloeosporioides by enhancing defense enzyme activities and the contents of secondary metabolites and inhibiting pectin hydrolysis. In summary, MT can be an effective alternative to fungicides aimed at controlling postharvest anthracnose.
期刊介绍:
The European Journal of Plant Pathology is an international journal publishing original articles in English dealing with fundamental and applied aspects of plant pathology; considering disease in agricultural and horticultural crops, forestry, and in natural plant populations. The types of articles published are :Original Research at the molecular, physiological, whole-plant and population levels; Mini-reviews on topics which are timely and of global rather than national or regional significance; Short Communications for important research findings that can be presented in an abbreviated format; and Letters-to-the-Editor, where these raise issues related to articles previously published in the journal. Submissions relating to disease vector biology and integrated crop protection are welcome. However, routine screenings of plant protection products, varietal trials for disease resistance, and biological control agents are not published in the journal unless framed in the context of strategic approaches to disease management.