Robust analytic continuation using sparse modeling approach imposed by semi-positive definiteness for multi-orbital systems

Yuichi Motoyama, Hiroshi Shinaoka, Junya Otsuki, Kazuyoshi Yoshimi
{"title":"Robust analytic continuation using sparse modeling approach imposed by semi-positive definiteness for multi-orbital systems","authors":"Yuichi Motoyama, Hiroshi Shinaoka, Junya Otsuki, Kazuyoshi Yoshimi","doi":"arxiv-2409.01509","DOIUrl":null,"url":null,"abstract":"Analytic continuation (AC) from imaginary-time Green's function to spectral\nfunction is essential in the numerical analysis of dynamical properties in\nquantum many-body systems. However, this process faces a fundamental challenge:\nit is an ill-posed problem, leading to unstable spectra against the noise in\nthe Green's function. This instability is further complicated in multi-orbital\nsystems with hybridization between spin-orbitals, where off-diagonal Green's\nfunctions yield a spectral matrix with off-diagonal elements, necessitating the\nmatrix's semi-positive definiteness to satisfy the causality. We propose an\nadvanced AC method using sparse modeling for multi-orbital systems, which\nreduces the effect of noise and ensures the matrix's semi-positive\ndefiniteness. We demonstrate the effectiveness of this approach by contrasting\nit with the conventional sparse modeling method, focusing on handling Green's\nfunctions with off-diagonal elements, thereby demonstrating our proposed\nmethod's enhanced stability and precision.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Analytic continuation (AC) from imaginary-time Green's function to spectral function is essential in the numerical analysis of dynamical properties in quantum many-body systems. However, this process faces a fundamental challenge: it is an ill-posed problem, leading to unstable spectra against the noise in the Green's function. This instability is further complicated in multi-orbital systems with hybridization between spin-orbitals, where off-diagonal Green's functions yield a spectral matrix with off-diagonal elements, necessitating the matrix's semi-positive definiteness to satisfy the causality. We propose an advanced AC method using sparse modeling for multi-orbital systems, which reduces the effect of noise and ensures the matrix's semi-positive definiteness. We demonstrate the effectiveness of this approach by contrasting it with the conventional sparse modeling method, focusing on handling Green's functions with off-diagonal elements, thereby demonstrating our proposed method's enhanced stability and precision.
利用多轨道系统半正定性施加的稀疏建模方法进行稳健的解析续航
从虚时格林函数到谱函数的解析延续(AC)是量子多体系统动态特性数值分析的关键。然而,这一过程面临着一个基本挑战:这是一个求解困难的问题,会导致不稳定的频谱与格林函数中的噪声对抗。这种不稳定性在具有自旋轨道间杂化的多轨道系统中更为复杂,在这种系统中,非对角格林函数会产生一个具有非对角元素的谱矩阵,这就需要矩阵的半正定性来满足因果关系。我们提出了一种先进的交流方法,利用稀疏建模来处理多轨道系统,这种方法既能减少噪声影响,又能确保矩阵的半正定性。我们通过与传统稀疏建模方法的对比,证明了这种方法的有效性,重点是处理具有非对角元素的格林函数,从而证明我们提出的方法具有更高的稳定性和精确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信