Curvature of an Arbitrary Surface for Discrete Gravity and for $d=2$ Pure Simplicial Complexes

Ali H. Chamseddine, Ola Malaeb, Sara Najem
{"title":"Curvature of an Arbitrary Surface for Discrete Gravity and for $d=2$ Pure Simplicial Complexes","authors":"Ali H. Chamseddine, Ola Malaeb, Sara Najem","doi":"arxiv-2409.04375","DOIUrl":null,"url":null,"abstract":"We propose a computation of curvature of arbitrary two-dimensional surfaces\nof three-dimensional objects, which is a contribution to discrete gravity with\npotential applications in network geometry. We begin by linking each point of\nthe surface in question to its four closest neighbors, forming quads. We then\nfocus on the simplices of $d=2$, or triangles embedded in these quads, which\nmake up a pure simplicial complex with $d=2$. This allows us to numerically\ncompute the local metric along with zweibeins, which subsequently leads to a\nderivation of discrete curvature defined at every triangle or face. We provide\nan efficient algorithm with $\\mathcal{O}(N \\log{N})$ complexity that first\norients two-dimensional surfaces, solves the nonlinear system of equations of\nthe spin-connections resulting from the torsion condition, and returns the\nvalue of curvature at each face.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a computation of curvature of arbitrary two-dimensional surfaces of three-dimensional objects, which is a contribution to discrete gravity with potential applications in network geometry. We begin by linking each point of the surface in question to its four closest neighbors, forming quads. We then focus on the simplices of $d=2$, or triangles embedded in these quads, which make up a pure simplicial complex with $d=2$. This allows us to numerically compute the local metric along with zweibeins, which subsequently leads to a derivation of discrete curvature defined at every triangle or face. We provide an efficient algorithm with $\mathcal{O}(N \log{N})$ complexity that first orients two-dimensional surfaces, solves the nonlinear system of equations of the spin-connections resulting from the torsion condition, and returns the value of curvature at each face.
离散引力和 d=2$ 纯简复数的任意曲面曲率
我们提出了一种计算三维物体任意二维表面曲率的方法,这是对离散重力的贡献,在网络几何中具有潜在的应用价值。我们首先将有关曲面的每个点与其四个近邻点连接起来,形成四边形。然后,我们将注意力集中在 $d=2$ 的简面,或嵌入这些四边形的三角形,它们构成了一个 $d=2$ 的纯简面复数。这样,我们就可以数值计算局部度量和zweibeins,进而推导出定义在每个三角形或面的离散曲率。我们提供了一种复杂度为 $\mathcal{O}(N \log{N})$ 的高效算法,它首先给出二维曲面,求解扭转条件产生的自旋连接的非线性方程组,并返回每个面的曲率值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信