Estimating event-by-event multiplicity by a Machine Learning Method for Hadronization Studies

Gábor Bíró, Gábor Papp, Gergely Gábor Barnaföldi
{"title":"Estimating event-by-event multiplicity by a Machine Learning Method for Hadronization Studies","authors":"Gábor Bíró, Gábor Papp, Gergely Gábor Barnaföldi","doi":"arxiv-2408.17130","DOIUrl":null,"url":null,"abstract":"Hadronization is a non-perturbative process, which theoretical description\ncan not be deduced from first principles. Modeling hadron formation requires\nseveral assumptions and various phenomenological approaches. Utilizing\nstate-of-the-art Deep Learning algorithms, it is eventually possible to train\nneural networks to learn non-linear and non-perturbative features of the\nphysical processes. In this study, the prediction results of three trained\nResNet networks are presented, by investigating charged particle multiplicities\nat event-by-event level. The widely used Lund string fragmentation model is\napplied as a training-baseline at $\\sqrt{s}= 7$ TeV proton-proton collisions.\nWe found that neural-networks with $ \\gtrsim\\mathcal{O}(10^3)$ parameters can\npredict the event-by-event charged hadron multiplicity values up to $\nN_\\mathrm{ch}\\lesssim 90 $.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hadronization is a non-perturbative process, which theoretical description can not be deduced from first principles. Modeling hadron formation requires several assumptions and various phenomenological approaches. Utilizing state-of-the-art Deep Learning algorithms, it is eventually possible to train neural networks to learn non-linear and non-perturbative features of the physical processes. In this study, the prediction results of three trained ResNet networks are presented, by investigating charged particle multiplicities at event-by-event level. The widely used Lund string fragmentation model is applied as a training-baseline at $\sqrt{s}= 7$ TeV proton-proton collisions. We found that neural-networks with $ \gtrsim\mathcal{O}(10^3)$ parameters can predict the event-by-event charged hadron multiplicity values up to $ N_\mathrm{ch}\lesssim 90 $.
用机器学习方法估算强子化研究中的逐个事件多重性
强子化是一个非微扰过程,其理论描述无法从第一性原理中推导出来。建立强子形成模型需要多个假设和多种现象学方法。利用最先进的深度学习算法,最终可以训练神经网络来学习物理过程的非线性和非微扰特征。在本研究中,通过逐个事件研究带电粒子倍率,展示了三个训练有素的ResNet网络的预测结果。我们发现,具有 $\gtrsim\mathcal{O}(10^3)$ 参数的神经网络可以预测逐个事件的带电强子倍率值高达 $N_\mathrm{ch}\lesssim 90 $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信