FEAST nonlinear eigenvalue algorithm for $GW$ quasiparticle equations

Dongming Li, Eric Polizzi
{"title":"FEAST nonlinear eigenvalue algorithm for $GW$ quasiparticle equations","authors":"Dongming Li, Eric Polizzi","doi":"arxiv-2409.06119","DOIUrl":null,"url":null,"abstract":"The use of Green's function in quantum many-body theory often leads to\nnonlinear eigenvalue problems, as Green's function needs to be defined in\nenergy domain. The $GW$ approximation method is one of the typical examples. In\nthis article, we introduce a method based on the FEAST eigenvalue algorithm for\naccurately solving the nonlinear eigenvalue $G_0W_0$ quasiparticle equation,\neliminating the need for the Kohn-Sham wavefunction approximation. Based on the\ncontour integral method for nonlinear eigenvalue problem, the energy\n(eigenvalue) domain is extended to complex plane. Hypercomplex number is\nintroduced to the contour deformation calculation of $GW$ self-energy to carry\nimaginary parts of both Green's functions and FEAST quadrature nodes.\nCalculation results for various molecules are presented and compared with a\nmore conventional graphical solution approximation method. It is confirmed that\nthe Highest Occupied Molecular Orbital (HOMO) from the Kohn-Sham equation is\nvery close to that of $GW$, while the Least Unoccupied Molecular Orbital (LUMO)\nshows noticeable differences.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of Green's function in quantum many-body theory often leads to nonlinear eigenvalue problems, as Green's function needs to be defined in energy domain. The $GW$ approximation method is one of the typical examples. In this article, we introduce a method based on the FEAST eigenvalue algorithm for accurately solving the nonlinear eigenvalue $G_0W_0$ quasiparticle equation, eliminating the need for the Kohn-Sham wavefunction approximation. Based on the contour integral method for nonlinear eigenvalue problem, the energy (eigenvalue) domain is extended to complex plane. Hypercomplex number is introduced to the contour deformation calculation of $GW$ self-energy to carry imaginary parts of both Green's functions and FEAST quadrature nodes. Calculation results for various molecules are presented and compared with a more conventional graphical solution approximation method. It is confirmed that the Highest Occupied Molecular Orbital (HOMO) from the Kohn-Sham equation is very close to that of $GW$, while the Least Unoccupied Molecular Orbital (LUMO) shows noticeable differences.
针对 $GW$ 准粒子方程的 FEAST 非线性特征值算法
在量子多体理论中使用格林函数常常会导致非线性特征值问题,因为格林函数需要在能域中定义。$GW$ 近似方法就是典型的例子之一。本文介绍了一种基于 FEAST 特征值算法的方法,用于精确求解非线性特征值 $G_0W_0$ 准粒子方程,省去了 Kohn-Sham 波函数近似。基于非线性特征值问题的轮廓积分法,能量(特征值)域被扩展到复平面。在计算 $GW$ 自能的轮廓变形时引入了超复数,以携带格林函数和 FEAST 正交节点的虚部。结果表明,Kohn-Sham 方程得出的最高占位分子轨道(HOMO)与 $GW$ 非常接近,而最低未占位分子轨道(LUMO)则存在明显差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信