When More Data Hurts: Optimizing Data Coverage While Mitigating Diversity Induced Underfitting in an Ultra-Fast Machine-Learned Potential

Jason B. Gibson, Tesia D. Janicki, Ajinkya C. Hire, Chris Bishop, J. Matthew D. Lane, Richard G. Hennig
{"title":"When More Data Hurts: Optimizing Data Coverage While Mitigating Diversity Induced Underfitting in an Ultra-Fast Machine-Learned Potential","authors":"Jason B. Gibson, Tesia D. Janicki, Ajinkya C. Hire, Chris Bishop, J. Matthew D. Lane, Richard G. Hennig","doi":"arxiv-2409.07610","DOIUrl":null,"url":null,"abstract":"Machine-learned interatomic potentials (MLIPs) are becoming an essential tool\nin materials modeling. However, optimizing the generation of training data used\nto parameterize the MLIPs remains a significant challenge. This is because\nMLIPs can fail when encountering local enviroments too different from those\npresent in the training data. The difficulty of determining \\textit{a priori}\nthe environments that will be encountered during molecular dynamics (MD)\nsimulation necessitates diverse, high-quality training data. This study\ninvestigates how training data diversity affects the performance of MLIPs using\nthe Ultra-Fast Force Field (UF$^3$) to model amorphous silicon nitride. We\nemploy expert and autonomously generated data to create the training data and\nfit four force-field variants to subsets of the data. Our findings reveal a\ncritical balance in training data diversity: insufficient diversity hinders\ngeneralization, while excessive diversity can exceed the MLIP's learning\ncapacity, reducing simulation accuracy. Specifically, we found that the UF$^3$\nvariant trained on a subset of the training data, in which nitrogen-rich\nstructures were removed, offered vastly better prediction and simulation\naccuracy than any other variant. By comparing these UF$^3$ variants, we\nhighlight the nuanced requirements for creating accurate MLIPs, emphasizing the\nimportance of application-specific training data to achieve optimal performance\nin modeling complex material behaviors.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine-learned interatomic potentials (MLIPs) are becoming an essential tool in materials modeling. However, optimizing the generation of training data used to parameterize the MLIPs remains a significant challenge. This is because MLIPs can fail when encountering local enviroments too different from those present in the training data. The difficulty of determining \textit{a priori} the environments that will be encountered during molecular dynamics (MD) simulation necessitates diverse, high-quality training data. This study investigates how training data diversity affects the performance of MLIPs using the Ultra-Fast Force Field (UF$^3$) to model amorphous silicon nitride. We employ expert and autonomously generated data to create the training data and fit four force-field variants to subsets of the data. Our findings reveal a critical balance in training data diversity: insufficient diversity hinders generalization, while excessive diversity can exceed the MLIP's learning capacity, reducing simulation accuracy. Specifically, we found that the UF$^3$ variant trained on a subset of the training data, in which nitrogen-rich structures were removed, offered vastly better prediction and simulation accuracy than any other variant. By comparing these UF$^3$ variants, we highlight the nuanced requirements for creating accurate MLIPs, emphasizing the importance of application-specific training data to achieve optimal performance in modeling complex material behaviors.
当更多数据带来伤害时:优化数据覆盖率,同时减轻超快机器学习潜力中由多样性引起的欠拟合问题
机器学习原子间势(MLIPs)正在成为材料建模的重要工具。然而,如何优化生成用于设置 MLIPs 参数的训练数据仍然是一项重大挑战。这是因为当遇到的局部环境与训练数据中的环境相差太大时,MLIPs 可能会失效。由于难以事先确定分子动力学(MD)模拟过程中会遇到的环境,因此需要多样化、高质量的训练数据。本研究探讨了训练数据多样性如何影响使用超快力场(UF$^3$)模拟非晶氮化硅的 MLIPs 的性能。我们利用专家数据和自主生成的数据创建训练数据,并将四种力场变体应用于数据子集。我们的研究结果揭示了训练数据多样性的关键平衡点:多样性不足会阻碍泛化,而多样性过多会超出 MLIP 的学习能力,降低模拟精度。具体来说,我们发现在训练数据的一个子集上训练的 UF$^3$ 变体(其中富氮结构被移除)的预测和模拟准确性远远高于其他任何变体。通过比较这些 UF$^3$ 变体,我们突出了创建精确 MLIP 的细微要求,强调了特定应用训练数据的重要性,以便在复杂材料行为建模中获得最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信