Generalization of some of Ramanujan's formulae

Aung Phone Maw
{"title":"Generalization of some of Ramanujan's formulae","authors":"Aung Phone Maw","doi":"arxiv-2408.09077","DOIUrl":null,"url":null,"abstract":"We will make use of the method of partial fractions to generalize some of\nRamanujan's infinite series identities, including Ramanujan's famous formula\nfor $\\zeta(2n+1)$. It is shown here that the method of partial fractions can be\nused to obtain many similar identities of this kind.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We will make use of the method of partial fractions to generalize some of Ramanujan's infinite series identities, including Ramanujan's famous formula for $\zeta(2n+1)$. It is shown here that the method of partial fractions can be used to obtain many similar identities of this kind.
拉马努扬公式的推广
我们将利用部分分数法来推广拉马努扬的一些无穷级数等式,包括拉马努扬著名的$\zeta(2n+1)$公式。在这里,我们将证明局部分数法可以用来得到许多类似的等差数列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信