{"title":"The characterizations of monotone functions which generate associative functions","authors":"Chen Meng, Yun-Mao Zhang, Xue-ping Wang","doi":"arxiv-2409.02941","DOIUrl":null,"url":null,"abstract":"Associativity of a two-place function $T: [0,1]^2\\rightarrow [0,1]$ defined\nby $T(x,y)=f^{(-1)}(F(f(x),f(y)))$ where $F:[0,\\infty]^2\\rightarrow[0,\\infty]$\nis an associative function, $f: [0,1]\\rightarrow [0,\\infty]$ is a monotone\nfunction which satisfies either $f(x)=f(x^{+})$ when $f(x^{+})\\in\n\\mbox{Ran}(f)$ or $f(x)\\neq f(y)$ for any $y\\neq x$ when $f(x^{+})\\notin\n\\mbox{Ran}(f)$ for all $x\\in[0,1]$ and $f^{(-1)}:[0,\\infty]\\rightarrow[0,1]$ is\na pseudo-inverse of $f$ depends only on properties of the range of $f$. The\nnecessary and sufficient conditions for the $T$ to be associative are presented\nby applying the properties of the monotone function $f$.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Associativity of a two-place function $T: [0,1]^2\rightarrow [0,1]$ defined
by $T(x,y)=f^{(-1)}(F(f(x),f(y)))$ where $F:[0,\infty]^2\rightarrow[0,\infty]$
is an associative function, $f: [0,1]\rightarrow [0,\infty]$ is a monotone
function which satisfies either $f(x)=f(x^{+})$ when $f(x^{+})\in
\mbox{Ran}(f)$ or $f(x)\neq f(y)$ for any $y\neq x$ when $f(x^{+})\notin
\mbox{Ran}(f)$ for all $x\in[0,1]$ and $f^{(-1)}:[0,\infty]\rightarrow[0,1]$ is
a pseudo-inverse of $f$ depends only on properties of the range of $f$. The
necessary and sufficient conditions for the $T$ to be associative are presented
by applying the properties of the monotone function $f$.