{"title":"An alternative proof of the Puiseux representation of the exponential integral","authors":"Glenn Bruda","doi":"arxiv-2409.02949","DOIUrl":null,"url":null,"abstract":"Working from definitions and an elementarily obtained integral formula for\nthe Euler-Mascheroni constant, we give an alternative proof of the classical\nPuiseux representation of the exponential integral.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Working from definitions and an elementarily obtained integral formula for
the Euler-Mascheroni constant, we give an alternative proof of the classical
Puiseux representation of the exponential integral.