On Finite Mellin Transform via Ramanujan's Master Theorem

Omprakash Atale
{"title":"On Finite Mellin Transform via Ramanujan's Master Theorem","authors":"Omprakash Atale","doi":"arxiv-2409.06304","DOIUrl":null,"url":null,"abstract":"This paper aims to show that by making use of Ramanujan's Master Theorem and\nthe properties of the lower incomplete gamma function, it is possible to\nconstruct a finite Mellin transform for the function $f(x)$ that has infinite\nseries expansions in positive integral powers of $x$. Some applications are\ndiscussed by evaluating certain definite integrals. The obtained solutions are\nalso compared with results from Mathematica to test the validity of the\ncalculations.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to show that by making use of Ramanujan's Master Theorem and the properties of the lower incomplete gamma function, it is possible to construct a finite Mellin transform for the function $f(x)$ that has infinite series expansions in positive integral powers of $x$. Some applications are discussed by evaluating certain definite integrals. The obtained solutions are also compared with results from Mathematica to test the validity of the calculations.
通过拉曼努强主定理论有限梅林变换
本文旨在说明,通过利用拉马努强的主定理和下不完全伽马函数的性质,可以为函数 $f(x)$ 构造一个有限梅林变换,该函数在 $x$ 的正积分幂中有无穷次展开。通过对某些定积分进行求值,讨论了一些应用。此外,还将得到的解与 Mathematica 的结果进行比较,以检验计算的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信