Long short-term search session-based document re-ranking model

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jianping Liu, Meng Wang, Jian Wang, Yingfei Wang, Xintao Chu
{"title":"Long short-term search session-based document re-ranking model","authors":"Jianping Liu, Meng Wang, Jian Wang, Yingfei Wang, Xintao Chu","doi":"10.1007/s10115-024-02205-4","DOIUrl":null,"url":null,"abstract":"<p>Document re-ranking is a core task in session search. However, most existing methods only focus on the short-term session and ignore the long-term history sessions. This leads to inadequate understanding of the user’s search intent, which affects the performance of model re-ranking. At the same time, these methods have weaker capability in understanding user queries. In this paper, we propose a long short-term search session-based re-ranking model (LSSRM). Firstly, we utilize the BERT model to predict the topic relevance between the query and candidate documents, in order to improve the model’s understanding of user queries. Secondly, we initialize the reading vector with topic relevance and use the personalized memory encoder module to model the user’s long-term search intent. Thirdly, we input the user’s current session interaction sequence into Transformer to obtain the vector representation of the user’s short-term search intent. Finally, the user’s search intent and topical relevance information are hierarchically fused to obtain the final document ranking scores. Then re-rank the documents according to this score. We conduct extensive experiments on two real-world session datasets. The experimental results show that our method outperforms the baseline models for the document re-ranking task.\n</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"17 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02205-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Document re-ranking is a core task in session search. However, most existing methods only focus on the short-term session and ignore the long-term history sessions. This leads to inadequate understanding of the user’s search intent, which affects the performance of model re-ranking. At the same time, these methods have weaker capability in understanding user queries. In this paper, we propose a long short-term search session-based re-ranking model (LSSRM). Firstly, we utilize the BERT model to predict the topic relevance between the query and candidate documents, in order to improve the model’s understanding of user queries. Secondly, we initialize the reading vector with topic relevance and use the personalized memory encoder module to model the user’s long-term search intent. Thirdly, we input the user’s current session interaction sequence into Transformer to obtain the vector representation of the user’s short-term search intent. Finally, the user’s search intent and topical relevance information are hierarchically fused to obtain the final document ranking scores. Then re-rank the documents according to this score. We conduct extensive experiments on two real-world session datasets. The experimental results show that our method outperforms the baseline models for the document re-ranking task.

Abstract Image

基于长期短期搜索会话的文档重新排序模型
文档重新排序是会话搜索的一项核心任务。然而,现有的大多数方法只关注短期会话,而忽略了长期历史会话。这导致对用户搜索意图的理解不足,影响了模型重新排序的性能。同时,这些方法对用户查询的理解能力较弱。本文提出了一种基于长期短期搜索会话的重新排序模型(LSSRM)。首先,我们利用 BERT 模型预测查询和候选文档之间的主题相关性,以提高模型对用户查询的理解能力。其次,我们用主题相关性初始化阅读向量,并使用个性化记忆编码器模块来模拟用户的长期搜索意图。第三,我们将用户当前会话的交互序列输入 Transformer,以获得用户短期搜索意图的向量表示。最后,将用户搜索意图和主题相关性信息进行分层融合,得到最终的文档排名得分。然后根据该分数对文档重新排序。我们在两个真实会话数据集上进行了大量实验。实验结果表明,在文档重新排序任务中,我们的方法优于基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Knowledge and Information Systems
Knowledge and Information Systems 工程技术-计算机:人工智能
CiteScore
5.70
自引率
7.40%
发文量
152
审稿时长
7.2 months
期刊介绍: Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信