Weak almost monomial groups and Artin's conjecture

Mircea Cimpoeas
{"title":"Weak almost monomial groups and Artin's conjecture","authors":"Mircea Cimpoeas","doi":"arxiv-2409.05629","DOIUrl":null,"url":null,"abstract":"We introduce a new class of finite groups, called weak almost monomial, which\ngeneralize two different notions of \"almost monomial\" groups, and we prove it\nis closed under taking factor groups and direct products. Let $K/\\mathbb Q$ be a finite Galois extension with a weak almost monomial\nGalois group $G$ and $s_0\\in \\mathbb C\\setminus \\{1\\}$. We prove that Artin\nconjecture's is true at $s_0$ if and only if the monoid of holomorphic Artin\n$L$-functions at $s_0$ is factorial. Also, we show that if $s_0$ is a simple\nzero for some Artin $L$-function associated to an irreducible character of $G$\nand it is not a zero for any other $L$-function associated to an irreducible\ncharacter, then Artin conjecture's is true at $s_0$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new class of finite groups, called weak almost monomial, which generalize two different notions of "almost monomial" groups, and we prove it is closed under taking factor groups and direct products. Let $K/\mathbb Q$ be a finite Galois extension with a weak almost monomial Galois group $G$ and $s_0\in \mathbb C\setminus \{1\}$. We prove that Artin conjecture's is true at $s_0$ if and only if the monoid of holomorphic Artin $L$-functions at $s_0$ is factorial. Also, we show that if $s_0$ is a simple zero for some Artin $L$-function associated to an irreducible character of $G$ and it is not a zero for any other $L$-function associated to an irreducible character, then Artin conjecture's is true at $s_0$.
弱几乎单项式群和阿尔丁猜想
我们引入了一类新的有限群,称为弱几乎单项式群,它概括了 "几乎单项式 "群的两个不同概念,并证明它在取因子群和直接乘积下是封闭的。让 $K/\mathbb Q$ 是一个有限伽罗瓦扩展,它有一个弱几乎单项式伽罗瓦群 $G$ 和 $s_0\in \mathbb C\setminus \{1\}$。我们证明,当且仅当在 $s_0$ 处的全形 Artin$L$ 函数的单元是阶乘的时候,Artinconjecture 的在 $s_0$ 是真的。此外,我们还证明,如果 $s_0$ 是与 $G$ 的不可还原character 相关联的某个 Artin$L$ 函数的简单零点,并且它不是与不可还原character 相关联的任何其他 $L$ 函数的零点,那么 Artinconjecture's 在 $s_0$ 处为真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信