Zeta functions enumerating subforms of quadratic forms

Daejun Kim, Seok Hyeong Lee, Seungjai Lee
{"title":"Zeta functions enumerating subforms of quadratic forms","authors":"Daejun Kim, Seok Hyeong Lee, Seungjai Lee","doi":"arxiv-2409.05625","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce and study the Dirichlet series enumerating\n(proper) equivalence classes of full rank subforms/sublattices of a given\nquadratic form/lattice, focusing on the positive definite binary case. We\nobtain formulas linking this Dirichlet series with Dirichlet series counting\nideal classes of the imaginary quadratic field associated with the quadratic\nform. Utilizing the result, we provide explicit formulas of the Dirichlet\nseries for several lattices, including square lattice and hexagonal lattice.\nMoreover, we investigate some analytic properties of this Dirichlet series.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce and study the Dirichlet series enumerating (proper) equivalence classes of full rank subforms/sublattices of a given quadratic form/lattice, focusing on the positive definite binary case. We obtain formulas linking this Dirichlet series with Dirichlet series counting ideal classes of the imaginary quadratic field associated with the quadratic form. Utilizing the result, we provide explicit formulas of the Dirichlet series for several lattices, including square lattice and hexagonal lattice. Moreover, we investigate some analytic properties of this Dirichlet series.
枚举二次函数子形式的 Zeta 函数
在本文中,我们介绍并研究了枚举给定二次型/格的满级子型/子格的(适当)等价类的狄利克特数列,重点是正定二元情况。我们获得了将该狄利克特数列与计算与二次型相关的虚二次型场的理想类的狄利克特数列联系起来的公式。利用这一结果,我们提供了几种晶格(包括正方形晶格和六角形晶格)的 Dirichlet 列的明确公式。此外,我们还研究了该 Dirichlet 列的一些解析性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信