Large degree primitive points on curves

Maarten Derickx
{"title":"Large degree primitive points on curves","authors":"Maarten Derickx","doi":"arxiv-2409.05796","DOIUrl":null,"url":null,"abstract":"A number field $K$ is called primitive if $\\mathbb Q$ and $K$ are the only\nsubfields of $K$. Let $X$ be a nice curve over $\\mathbb Q$ of genus $g$. A\npoint $P$ of degree $d$ on $X$ is called primitive if the field of definition\n$\\mathbb Q(P)$ of the point is primitive. In this short note we prove that if\n$X$ has a divisor of degree $d> 2g$, then $X$ has infinitely many primitive\npoints of degree $d$. This complements the results of Khawaja and Siksek that\nshow that points of low degree are not primitive under certain conditions.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A number field $K$ is called primitive if $\mathbb Q$ and $K$ are the only subfields of $K$. Let $X$ be a nice curve over $\mathbb Q$ of genus $g$. A point $P$ of degree $d$ on $X$ is called primitive if the field of definition $\mathbb Q(P)$ of the point is primitive. In this short note we prove that if $X$ has a divisor of degree $d> 2g$, then $X$ has infinitely many primitive points of degree $d$. This complements the results of Khawaja and Siksek that show that points of low degree are not primitive under certain conditions.
曲线上的大度原始点
如果 $\mathbb Q$ 和 $K$ 是 $K$ 的唯一子域,则数域 $K$ 称为原始域。让 $X$ 是一条在 $\mathbb Q$ 上的好曲线,其属为 $g$。如果点的定义域$\mathbb Q(P)$是原始的,那么在$X$上度为$d$的点$P$就称为原始点。在这篇短文中,我们证明如果$X$有一个度数为$d> 2g$的除数,那么$X$就有无限多个度数为$d$的原始点。这是对哈瓦贾和西克塞克的结果的补充,哈瓦贾和西克塞克的结果表明,在某些条件下,低度点不是原始点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信