A weighted vertical Sato-Tate law for Maaß forms on $\rm{GSp}_4$

Félicien Comtat
{"title":"A weighted vertical Sato-Tate law for Maaß forms on $\\rm{GSp}_4$","authors":"Félicien Comtat","doi":"arxiv-2409.06027","DOIUrl":null,"url":null,"abstract":"We prove a weighted Sato-Tate law for the Satake parameters of automorphic\nforms on $\\rm{GSp}_4$ with respect to a fairly general congruence subgroup $H$\nwhose level tends to infinity. When the level is squarefree we refine our\nresult to the cuspidal spectrum. The ingredients are the $\\rm{GSp}_4$ Kuznetsov\nformula and the explicit calculation of local integrals involved in the\nWhittaker coefficients of $\\rm{GSp}_4$ Eisenstein series. We also discuss how\nthe problem of bounding the continuous spectrum in the level aspect naturally\nleads to some combinatorial questions involving the double cosets in $P\n\\backslash G / H$, for each parabolic subgroup $P$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a weighted Sato-Tate law for the Satake parameters of automorphic forms on $\rm{GSp}_4$ with respect to a fairly general congruence subgroup $H$ whose level tends to infinity. When the level is squarefree we refine our result to the cuspidal spectrum. The ingredients are the $\rm{GSp}_4$ Kuznetsov formula and the explicit calculation of local integrals involved in the Whittaker coefficients of $\rm{GSp}_4$ Eisenstein series. We also discuss how the problem of bounding the continuous spectrum in the level aspect naturally leads to some combinatorial questions involving the double cosets in $P \backslash G / H$, for each parabolic subgroup $P$.
$\rm{GSp}_4$上Maaß形式的加权垂直萨托-塔特定律
我们证明了$\rm{GSp}_4$上自形形的加权萨托-塔特定律,该定律是关于水平趋于无穷大的一般同余子群$H$的。当水平无平方时,我们将结果细化为尖顶谱。其要素是$\rm{GSp}_4$库兹涅佐夫公式和$\rm{GSp}_4$爱森斯坦级数的维特克系数所涉及的局部积分的显式计算。我们还讨论了在水平方面约束连续谱的问题如何自然地引出一些组合问题,这些问题涉及每个抛物线子群 $P$ 的 $P\backslash G / H$ 中的双余弦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信