Uniform Discreteness of Discrete Orbits of Non-Uniform Lattices in $SL_2(\mathbb{R})$

Sahar Bashan
{"title":"Uniform Discreteness of Discrete Orbits of Non-Uniform Lattices in $SL_2(\\mathbb{R})$","authors":"Sahar Bashan","doi":"arxiv-2409.05935","DOIUrl":null,"url":null,"abstract":"We study the property of uniform discreteness within discrete orbits of\nnon-uniform lattices in $SL_2(\\mathbb{R})$, acting on $\\mathbb{R}^2$ by linear\ntransformations. We provide a new proof of the conditions under which the orbit\nof a non-uniform lattice in $SL_2(\\mathbb{R})$ is uniformly discrete, by using\nDiophantine properties. Our results include a detailed analysis of the\nasymptotic behavior of the error terms. Focusing on a specific group $\\Gamma$\nand a discrete orbit of it, $S$, the main result of this paper is that for any\n$\\epsilon>0$, three points in $S$ can be found on a horizontal line within\ndistance $\\epsilon$ of each other. This gives a partial result toward a\nconjecture of Leli\\`evre. The set $S$ and group $\\Gamma$ are respectively the\nset of long cylinder holonomy vectors, and Veech group, of the \"golden L\"\ntranslation surface.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the property of uniform discreteness within discrete orbits of non-uniform lattices in $SL_2(\mathbb{R})$, acting on $\mathbb{R}^2$ by linear transformations. We provide a new proof of the conditions under which the orbit of a non-uniform lattice in $SL_2(\mathbb{R})$ is uniformly discrete, by using Diophantine properties. Our results include a detailed analysis of the asymptotic behavior of the error terms. Focusing on a specific group $\Gamma$ and a discrete orbit of it, $S$, the main result of this paper is that for any $\epsilon>0$, three points in $S$ can be found on a horizontal line within distance $\epsilon$ of each other. This gives a partial result toward a conjecture of Leli\`evre. The set $S$ and group $\Gamma$ are respectively the set of long cylinder holonomy vectors, and Veech group, of the "golden L" translation surface.
$SL_2(\mathbb{R})$中非均匀网格的离散轨道的均匀不严密性
我们研究了通过线性变换作用于 $\mathbb{R}^2$ 的 $SL_2(\mathbb{R})$ 中的非均匀网格的离散轨道内均匀离散性的性质。我们利用二凡性质,对$SL_2(\mathbb{R})$中的非均匀网格的轨道均匀离散的条件进行了新的证明。我们的结果包括对误差项渐近行为的详细分析。本文聚焦于一个特定的组 $\Gamma$ 及其离散轨道 $S$,其主要结果是:对于任意 $\epsilon>0$,可以在水平线上找到 $S$中的三个点,它们之间的距离为 $\epsilon$。这给出了勒利耶夫猜想的部分结果。集合$S$和群$\Gamma$分别是 "黄金L "平移面的长圆柱整体矢量集合和Veech群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信