General Dynamics and Generation Mapping for Collatz-type Sequences

Gaurav Goyal
{"title":"General Dynamics and Generation Mapping for Collatz-type Sequences","authors":"Gaurav Goyal","doi":"arxiv-2409.07929","DOIUrl":null,"url":null,"abstract":"Let an odd integer \\(\\mathcal{X}\\) be expressed as $\\left\\{\\sum\\limits_{M >\nm}b_M2^M\\right\\}+2^m-1,$ where $b_M\\in\\{0,1\\}$ and $2^m-1$ is referred to as\nthe Governor. In Collatz-type functions, a high index Governor is eventually\nreduced to $2^1-1$. For the $3\\mathcal{Z}+1$ sequence, the Governor occurring\nin the Trivial cycle is $2^1-1$, while for the $5\\mathcal{Z}+1$ sequence, the\nTrivial Governors are $2^2-1$ and $2^1-1$. Therefore, in these specific\nsequences, the Collatz function reduces the Governor $2^m - 1$ to the Trivial\nGovernor $2^{\\mathcal{T}} - 1$. Once this Trivial Governor is reached, it can\nevolve to a higher index Governor through interactions with other terms. This\nfeature allows $\\mathcal{X}$ to reappear in a Collatz-type sequence, since $2^m\n- 1 = 2^{m - 1} + \\cdots + 2^{\\mathcal{T} + 1} +\n2^{\\mathcal{T}}+(2^{\\mathcal{T}}-1).$ Thus, if $\\mathcal{X}$ reappears, at\nleast one odd ancestor of $\\left\\{\\sum\\limits_{M >\nm}b_M2^M\\right\\}+2^{m-1}+\\cdots+2^{\\mathcal{T}+1}+2^{\\mathcal{T}}+(2^{\\mathcal{T}}-1)$\nmust have the Governor $2^m-1$. Ancestor mapping shows that all odd ancestors\nof $\\mathcal{X}$ have the Trivial Governor for the respective Collatz sequence.\nThis implies that odd integers that repeat in the $3\\mathcal{Z} + 1$ sequence\nhave the Governor $2^1 - 1$, while those forming a repeating cycle in the\n$5\\mathcal{Z} + 1$ sequence have either $2^2 - 1$ or $2^1 - 1$ as the Governor.\nSuccessor mapping for the $3\\mathcal{Z} + 1$ sequence further indicates that\nthere are no auxiliary cycles, as the Trivial Governor is always transformed\ninto a different index Governor. Similarly, successor mapping for the\n$5\\mathcal{Z} + 1$ sequence reveals that the smallest odd integers forming an\nauxiliary cycle are smaller than $2^5$. Finally, attempts to identify integers\nthat diverge for the $3\\mathcal{Z} + 1$ sequence suggest that no such integers\nexist.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let an odd integer \(\mathcal{X}\) be expressed as $\left\{\sum\limits_{M > m}b_M2^M\right\}+2^m-1,$ where $b_M\in\{0,1\}$ and $2^m-1$ is referred to as the Governor. In Collatz-type functions, a high index Governor is eventually reduced to $2^1-1$. For the $3\mathcal{Z}+1$ sequence, the Governor occurring in the Trivial cycle is $2^1-1$, while for the $5\mathcal{Z}+1$ sequence, the Trivial Governors are $2^2-1$ and $2^1-1$. Therefore, in these specific sequences, the Collatz function reduces the Governor $2^m - 1$ to the Trivial Governor $2^{\mathcal{T}} - 1$. Once this Trivial Governor is reached, it can evolve to a higher index Governor through interactions with other terms. This feature allows $\mathcal{X}$ to reappear in a Collatz-type sequence, since $2^m - 1 = 2^{m - 1} + \cdots + 2^{\mathcal{T} + 1} + 2^{\mathcal{T}}+(2^{\mathcal{T}}-1).$ Thus, if $\mathcal{X}$ reappears, at least one odd ancestor of $\left\{\sum\limits_{M > m}b_M2^M\right\}+2^{m-1}+\cdots+2^{\mathcal{T}+1}+2^{\mathcal{T}}+(2^{\mathcal{T}}-1)$ must have the Governor $2^m-1$. Ancestor mapping shows that all odd ancestors of $\mathcal{X}$ have the Trivial Governor for the respective Collatz sequence. This implies that odd integers that repeat in the $3\mathcal{Z} + 1$ sequence have the Governor $2^1 - 1$, while those forming a repeating cycle in the $5\mathcal{Z} + 1$ sequence have either $2^2 - 1$ or $2^1 - 1$ as the Governor. Successor mapping for the $3\mathcal{Z} + 1$ sequence further indicates that there are no auxiliary cycles, as the Trivial Governor is always transformed into a different index Governor. Similarly, successor mapping for the $5\mathcal{Z} + 1$ sequence reveals that the smallest odd integers forming an auxiliary cycle are smaller than $2^5$. Finally, attempts to identify integers that diverge for the $3\mathcal{Z} + 1$ sequence suggest that no such integers exist.
通用动力和科拉茨型序列的世代映射
让一个奇整数\(mathcal{X}\)表示为 $\left\{sum\limits_{M>m}b_M2^M\right\}+2^m-1,$其中$b_M\in\{0,1\}$和$2^m-1$被称为总督。在科拉茨型函数中,高指数总督最终会被简化为 2^1-1$ 。对于$3\mathcal{Z}+1$序列,出现在三维循环中的总督为$2^1-1$,而对于$5\mathcal{Z}+1$序列,三维总督分别为$2^2-1$和$2^1-1$。因此,在这些特定的序列中,科拉茨函数将总督 2^m - 1$ 简化为三维总督 2^{mathcal{T}} 。- 1$.一旦达到这个三维治理器,它就可以通过与其他项的相互作用演变为更高指数的治理器。这一特征允许 $\mathcal{X}$ 在科拉茨类型序列中重新出现,因为 $2^m- 1 = 2^{m - 1}.+ \cdots + 2^{mathcal{T}+ 1}+2^{\mathcal{T}}+(2^{\mathcal{T}}-1).因此,如果 $\mathcal{X}$ 再次出现,那么 $left\{sum\limits_{M >m}b_M2^M\right}+2^{m-1}+\cdots+2^{\mathcal{T}+1}+2^{\mathcal{T}}+(2^{\mathcal{T}}-1)$ 的至少一个奇数祖先必须有督 2^m-1$。祖先映射表明,$\mathcal{X}$ 的所有奇数祖先在各自的科拉茨序列中都有三维总督。+ 1$ 序列中重复出现的奇数整数具有 2^1 - 1$ 的督率,而那些在$5\mathcal{Z}$ 序列中形成重复循环的奇数整数具有 2^1 - 1$ 的督率。+ 1$ 序列的后继映射进一步表明,在$5\mathcal{Z} + 1$ 序列中,th = 2^2 - 1$ 或 $2^1 - 1$ 是督域。+ 1$ 序列的后继映射进一步表明不存在辅助循环,因为三维治理器总是转化为不同索引的治理器。同样地,$5\mathcal{Z} + 1$ 序列的后继映射也揭示了最小的三维治理器总是转化为不同的索引治理器。+ 1$ 序列的后继映射显示,构成辅助循环的最小奇整数小于 2^5$。最后,试图找出使$3\mathcal{Z} + 1$ 序列发散的整数表明,没有这样的整数。+ 1$ 序列发散的整数,表明不存在这样的整数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信