No proper generalized quadratic forms are universal over quadratic fields

Ondřej ChwiedziukCharles University, Matěj DoležálekCharles University, Simona HlavinkováCharles University, Emma PěchoučkováCharles University, Zdeněk PezlarCharles University, Om PrakashCharles University, Anna RůžičkováCharles University, Mikuláš ZindulkaCharles University
{"title":"No proper generalized quadratic forms are universal over quadratic fields","authors":"Ondřej ChwiedziukCharles University, Matěj DoležálekCharles University, Simona HlavinkováCharles University, Emma PěchoučkováCharles University, Zdeněk PezlarCharles University, Om PrakashCharles University, Anna RůžičkováCharles University, Mikuláš ZindulkaCharles University","doi":"arxiv-2409.07941","DOIUrl":null,"url":null,"abstract":"We consider generalized quadratic forms over real quadratic number fields and\nprove, under a natural positive-definiteness condition, that a generalized\nquadratic form can only be universal if it contains a quadratic subform that is\nuniversal. We also construct an example illustrating that the\npositive-definiteness condition is necessary.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider generalized quadratic forms over real quadratic number fields and prove, under a natural positive-definiteness condition, that a generalized quadratic form can only be universal if it contains a quadratic subform that is universal. We also construct an example illustrating that the positive-definiteness condition is necessary.
没有适当的广义二次型是在二次域上通用的
我们考虑了实二次数域上的广义二次型,并在一个自然的正定义条件下证明,广义二次型只有包含一个广义二次型子形式,才可能是广义二次型。我们还构造了一个例子,说明正定义条件是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信