Uniform polynomial bounds on torsion from rational geometric isogeny classes

Abbey Bourdon, Tyler Genao
{"title":"Uniform polynomial bounds on torsion from rational geometric isogeny classes","authors":"Abbey Bourdon, Tyler Genao","doi":"arxiv-2409.08214","DOIUrl":null,"url":null,"abstract":"In 1996, Merel showed there exists a function $B\\colon\n\\mathbb{Z}^+\\rightarrow \\mathbb{Z}^+$ such that for any elliptic curve $E/F$\ndefined over a number field of degree $d$, one has the torsion group bound $\\#\nE(F)[\\textrm{tors}]\\leq B(d)$. Based on subsequent work, it is conjectured that\none can choose $B$ to be polynomial in the degree $d$. In this paper, we show\nthat such bounds exist for torsion from the family $\\mathcal{I}_{\\mathbb{Q}}$\nof elliptic curves which are geometrically isogenous to at least one rational\nelliptic curve. More precisely, we show that for each $\\epsilon>0$ there exists\n$c_\\epsilon>0$ such that for any elliptic curve $E/F\\in\n\\mathcal{I}_{\\mathbb{Q}}$, one has \\[ \\# E(F)[\\textrm{tors}]\\leq\nc_\\epsilon\\cdot [F:\\mathbb{Q}]^{5+\\epsilon}. \\] This generalizes prior work of\nClark and Pollack, as well as work of the second author in the case of rational\ngeometric isogeny classes.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 1996, Merel showed there exists a function $B\colon \mathbb{Z}^+\rightarrow \mathbb{Z}^+$ such that for any elliptic curve $E/F$ defined over a number field of degree $d$, one has the torsion group bound $\# E(F)[\textrm{tors}]\leq B(d)$. Based on subsequent work, it is conjectured that one can choose $B$ to be polynomial in the degree $d$. In this paper, we show that such bounds exist for torsion from the family $\mathcal{I}_{\mathbb{Q}}$ of elliptic curves which are geometrically isogenous to at least one rational elliptic curve. More precisely, we show that for each $\epsilon>0$ there exists $c_\epsilon>0$ such that for any elliptic curve $E/F\in \mathcal{I}_{\mathbb{Q}}$, one has \[ \# E(F)[\textrm{tors}]\leq c_\epsilon\cdot [F:\mathbb{Q}]^{5+\epsilon}. \] This generalizes prior work of Clark and Pollack, as well as work of the second author in the case of rational geometric isogeny classes.
从有理几何同源类看扭转的均匀多项式边界
1996 年,梅雷尔证明了存在一个函数 $B\colon\mathbb{Z}^+\rightarrow \mathbb{Z}^+$,使得对于定义在阶数为 $d$ 的数域上的任何椭圆曲线 $E/F$,都有扭转群约束 $\#E(F)[\textrm{tors}]\leq B(d)$。根据随后的工作,人们猜想可以选择 $B$ 是阶数 $d$ 的多项式。在本文中,我们证明了对于来自椭圆曲线族 $\mathcal{I}_{mathbb{Q}}$ 的扭转存在这样的界限,这些椭圆曲线在几何上至少与一条有理椭圆曲线同源。更准确地说,我们证明了对于每个 $epsilon>0$ 都存在$c_\epsilon>0$,从而对于任何椭圆曲线 $E/F\in\mathcal{I}_{\mathbb{Q}}$ 都有\[ \# E(F)[\textrm{tors}]\leqc_\epsilon\cdot [F:\mathbb{Q}]^{5+\epsilon}.\]这概括了克拉克和波拉克之前的工作,以及第二作者在有理几何等因类情况下的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信