Integer Factorization via Continued Fractions and Quadratic Forms

Nadir Murru, Giulia Salvatori
{"title":"Integer Factorization via Continued Fractions and Quadratic Forms","authors":"Nadir Murru, Giulia Salvatori","doi":"arxiv-2409.03486","DOIUrl":null,"url":null,"abstract":"We propose a novel factorization algorithm that leverages the theory\nunderlying the SQUFOF method, including reduced quadratic forms,\ninfrastructural distance, and Gauss composition. We also present an analysis of\nour method, which has a computational complexity of $O \\left( \\exp \\left(\n\\frac{3}{\\sqrt{8}} \\sqrt{\\ln N \\ln \\ln N} \\right) \\right)$, making it more\nefficient than the classical SQUFOF and CFRAC algorithms. Additionally, our\nalgorithm is polynomial-time, provided knowledge of a (not too large) multiple\nof the regulator of $\\mathbb{Q}(N)$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel factorization algorithm that leverages the theory underlying the SQUFOF method, including reduced quadratic forms, infrastructural distance, and Gauss composition. We also present an analysis of our method, which has a computational complexity of $O \left( \exp \left( \frac{3}{\sqrt{8}} \sqrt{\ln N \ln \ln N} \right) \right)$, making it more efficient than the classical SQUFOF and CFRAC algorithms. Additionally, our algorithm is polynomial-time, provided knowledge of a (not too large) multiple of the regulator of $\mathbb{Q}(N)$.
通过连续分数和二次型进行整数因式分解
我们提出了一种新颖的因式分解算法,该算法利用了 SQUFOF 方法的基础理论,包括还原二次型、基础距离和高斯合成。我们还对我们的方法进行了分析,它的计算复杂度为 $O \left( \exp \left(\frac{3}{\sqrt{8}} \sqrt{ln N \ln \ln N} \right) \right)$,比经典的 SQUFOF 算法和 CFRAC 算法更高效。此外,只要知道 $\mathbb{Q}(N)$ 的调节器的一个(不大的)倍数,我们的算法就是多项式时间的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信