Weil-Barsotti formula for $\mathbf{T}$-modules

Dawid E. Kędzierski, Piotr Krasoń
{"title":"Weil-Barsotti formula for $\\mathbf{T}$-modules","authors":"Dawid E. Kędzierski, Piotr Krasoń","doi":"arxiv-2409.04029","DOIUrl":null,"url":null,"abstract":"In the work of M. A. Papanikolas and N. Ramachandran [A Weil-Barsotti formula\nfor Drinfeld modules, Journal of Number Theory 98, (2003), 407-431] the\nWeil-Barsotti formula for the function field case concerning\n$\\Ext_{\\tau}^1(E,C)$ where $E$ is a Drinfeld module and $C$ is the Carlitz\nmodule was proved. We generalize this formula to the case where $E$ is a\nstrictly pure \\tm module $\\Phi$ with the zero nilpotent matrix $N_\\Phi.$ For\nsuch a \\tm module $\\Phi$ we explicitly compute its dual \\tm module\n${\\Phi}^{\\vee}$ as well as its double dual ${\\Phi}^{{\\vee}{\\vee}}.$ This\ncomputation is done in a a subtle way by combination of the \\tm reduction\nalgorithm developed by F. G{\\l}och, D.E. K{\\k e}dzierski, P. Kraso{\\'n} [\nAlgorithms for determination of \\tm module structures on some extension groups\n, arXiv:2408.08207] and the methods of the work of D.E. K{\\k e}dzierski and P.\nKraso{\\'n} [On $\\Ext^1$ for Drinfeld modules, Journal of Number Theory 256\n(2024) 97-135]. We also give a counterexample to the Weil-Barsotti formula if\nthe nilpotent matrix $N_{\\Phi}$ is non-zero.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the work of M. A. Papanikolas and N. Ramachandran [A Weil-Barsotti formula for Drinfeld modules, Journal of Number Theory 98, (2003), 407-431] the Weil-Barsotti formula for the function field case concerning $\Ext_{\tau}^1(E,C)$ where $E$ is a Drinfeld module and $C$ is the Carlitz module was proved. We generalize this formula to the case where $E$ is a strictly pure \tm module $\Phi$ with the zero nilpotent matrix $N_\Phi.$ For such a \tm module $\Phi$ we explicitly compute its dual \tm module ${\Phi}^{\vee}$ as well as its double dual ${\Phi}^{{\vee}{\vee}}.$ This computation is done in a a subtle way by combination of the \tm reduction algorithm developed by F. G{\l}och, D.E. K{\k e}dzierski, P. Kraso{\'n} [ Algorithms for determination of \tm module structures on some extension groups , arXiv:2408.08207] and the methods of the work of D.E. K{\k e}dzierski and P. Kraso{\'n} [On $\Ext^1$ for Drinfeld modules, Journal of Number Theory 256 (2024) 97-135]. We also give a counterexample to the Weil-Barsotti formula if the nilpotent matrix $N_{\Phi}$ is non-zero.
$mathbf{T}$ 模块的 Weil-Barsotti 公式
在 M. A. Papanikolas 和 N. Ramachandran 的工作[A Weil-Barsotti formulafor Drinfeld modules, Journal of Number Theory 98, (2003), 407-431]中,证明了关于$Ext_\{tau}^1(E,C)$(其中$E$是德林菲尔德模块,$C$是卡利茨模块)的函数场情况的魏尔-巴索提公式。我们把这个公式推广到 $E$ 是严格纯粹的 \tm 模块 $Phi$ 与零零势矩阵 $N_\Phi 的情况。对于这样的 \tm 模块 $Phi$ 我们明确地计算它的对偶 \tm 模块 ${Phi}^{\vee}$ 以及它的双重对偶 ${Phi}^{\vee}{\vee}}.这种计算是通过结合 F. G{\l}och, D.E. K{k e}dzierski, P. Kraso{'n} 开发的 \tm 还原算法以一种微妙的方式完成的。[一些扩展群上的\tm 模块结构的确定算法,arXiv:2408.08207] 以及 D. E. K{k e}dzierski 和 P. Kraso{\'n} 的工作方法[On $\Ext^1$ for Drinfeld modules, Journal of Number Theory 256(2024) 97-135].如果无穷矩阵 $N_{\Phi}$ 非零,我们还给出了 Weil-Barsotti 公式的一个反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信