Lattice point counting statistics for 3-dimensional shrinking Cygan-Korányi spherical shells

Yoav A. Gath
{"title":"Lattice point counting statistics for 3-dimensional shrinking Cygan-Korányi spherical shells","authors":"Yoav A. Gath","doi":"arxiv-2409.04814","DOIUrl":null,"url":null,"abstract":"Let $E(x;\\omega)$ be the error term for the number of integer lattice points\nlying inside a $3$-dimensional Cygan-Kor\\'anyi spherical shell of inner radius\n$x$ and gap width $\\omega(x)>0$. Assuming that $\\omega(x)\\to0$ as $x\\to\\infty$,\nand that $\\omega$ satisfies suitable regularity conditions, we prove that\n$E(x;\\omega)$, properly normalized, has a limiting distribution. Moreover, we\nshow that the corresponding distribution is moment-determinate, and we give a\nclosed form expression for its moments. As a corollary, we deduce that the\nlimiting distribution is the standard Gaussian measure whenever $\\omega$ is\nslowly varying. We also construct gap width functions $\\omega$, whose\ncorresponding error term has a limiting distribution that is absolutely\ncontinuous with a non-Gaussian density.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $E(x;\omega)$ be the error term for the number of integer lattice points lying inside a $3$-dimensional Cygan-Kor\'anyi spherical shell of inner radius $x$ and gap width $\omega(x)>0$. Assuming that $\omega(x)\to0$ as $x\to\infty$, and that $\omega$ satisfies suitable regularity conditions, we prove that $E(x;\omega)$, properly normalized, has a limiting distribution. Moreover, we show that the corresponding distribution is moment-determinate, and we give a closed form expression for its moments. As a corollary, we deduce that the limiting distribution is the standard Gaussian measure whenever $\omega$ is slowly varying. We also construct gap width functions $\omega$, whose corresponding error term has a limiting distribution that is absolutely continuous with a non-Gaussian density.
三维收缩 Cygan-Korányi 球壳的晶格点计数统计
让$E(x;\omega)$是位于内半径为$x$、间隙宽度为$\omega(x)>0$的3$维Cygan-Kor\'anyi球壳内的整数晶格点数的误差项。假设$\omega(x)随着$x\to\infty$而变为0$,并且$\omega$满足合适的正则性条件,我们证明适当归一化后的$E(x;\omega)$有一个极限分布。此外,我们还证明了相应的分布是矩决定的,并给出了其矩的封闭形式表达式。作为推论,我们推导出只要 $\omega$ 是缓慢变化的,极限分布就是标准高斯分布。我们还构造了间隙宽度函数 $\omega$,其对应误差项的极限分布是绝对连续的,具有非高斯密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信