Vera Lay, Franziska Baensch, Anna Maria Skłodowska, Tobias Fritsch, Michael Stamm, Prathik Prabhakara, Sergej Johann, Patrick Sturm, Hans-Carsten Kühne, Ernst Niederleithinger
{"title":"Multi–sensory Monitoring and Non–destructive Testing of New Materials for Concrete Engineered Barrier Systems","authors":"Vera Lay, Franziska Baensch, Anna Maria Skłodowska, Tobias Fritsch, Michael Stamm, Prathik Prabhakara, Sergej Johann, Patrick Sturm, Hans-Carsten Kühne, Ernst Niederleithinger","doi":"10.3151/jact.22.516","DOIUrl":null,"url":null,"abstract":"</p><p>The crucial part of nuclear waste storage is the construction of sealing structures made of reliable, safe and well–understood materials. We present an extended analysis of long-term multi–sensory monitoring and non–destructive testing (NDT) inspection of two laboratory specimens aiming at potential materials for sealing structures for nuclear waste repositories. Specimens with a volume of 340 litres made from newly developed alkali–activated materials (AAM) and established salt concrete (SC) were analysed using embedded acoustic emission and wireless radio-frequency identification (RFID) sensors, ultrasonic echo imaging, active thermography, and X–ray computed tomography. The monitoring analysis showed lower heat of reaction and 50% less acoustic emission events in AAM compared to SC. However, due to the surface effects of the AAM material, the number of acoustic emission events increased significantly after approximately two months of monitoring. Subsequently performed NDT inspections reliably located embedded sensors and confirmed the absence of major cracks or impurities. The presented laboratory results show the feasibility and potential of comprehensive NDT monitoring and inspection to characterise cementitious and alternative materials as well as the need for multi–parameter long–term monitoring. Thus, our study demonstrates that tailored NDT investigations will help to develop safe sealing structures for nuclear waste repositories.</p>\n<p></p>","PeriodicalId":14868,"journal":{"name":"Journal of Advanced Concrete Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Concrete Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3151/jact.22.516","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The crucial part of nuclear waste storage is the construction of sealing structures made of reliable, safe and well–understood materials. We present an extended analysis of long-term multi–sensory monitoring and non–destructive testing (NDT) inspection of two laboratory specimens aiming at potential materials for sealing structures for nuclear waste repositories. Specimens with a volume of 340 litres made from newly developed alkali–activated materials (AAM) and established salt concrete (SC) were analysed using embedded acoustic emission and wireless radio-frequency identification (RFID) sensors, ultrasonic echo imaging, active thermography, and X–ray computed tomography. The monitoring analysis showed lower heat of reaction and 50% less acoustic emission events in AAM compared to SC. However, due to the surface effects of the AAM material, the number of acoustic emission events increased significantly after approximately two months of monitoring. Subsequently performed NDT inspections reliably located embedded sensors and confirmed the absence of major cracks or impurities. The presented laboratory results show the feasibility and potential of comprehensive NDT monitoring and inspection to characterise cementitious and alternative materials as well as the need for multi–parameter long–term monitoring. Thus, our study demonstrates that tailored NDT investigations will help to develop safe sealing structures for nuclear waste repositories.
期刊介绍:
JACT is fast. Only 5 to 7 months from submission to publishing thanks to electronic file exchange between you, the reviewers and the editors.
JACT is high quality. Peer-reviewed by internationally renowned experts who return review comments to ensure the highest possible quality.
JACT is transparent. The status of your manuscript from submission to publishing can be viewed on our website, greatly reducing the frustration of being kept in the dark, possibly for over a year in the case of some journals.
JACT is cost-effective. Submission and subscription are free of charge . Full-text PDF files are available for the authors to open at their web sites.
Scope:
*Materials:
-Material properties
-Fresh concrete
-Hardened concrete
-High performance concrete
-Development of new materials
-Fiber reinforcement
*Maintenance and Rehabilitation:
-Durability and repair
-Strengthening/Rehabilitation
-LCC for concrete structures
-Environmant conscious materials
*Structures:
-Design and construction of RC and PC Structures
-Seismic design
-Safety against environmental disasters
-Failure mechanism and non-linear analysis/modeling
-Composite and mixed structures
*Other:
-Monitoring
-Aesthetics of concrete structures
-Other concrete related topics