Analysis of a special type of soliton on Kenmotsu manifolds

Somnath Mondal, Meraj Ali Khan, Santu Dey, Ashis Kumar Sarkar, Cenap Ozel, Alexander Pigazzini, Richard Pincak
{"title":"Analysis of a special type of soliton on Kenmotsu manifolds","authors":"Somnath Mondal, Meraj Ali Khan, Santu Dey, Ashis Kumar Sarkar, Cenap Ozel, Alexander Pigazzini, Richard Pincak","doi":"arxiv-2408.13288","DOIUrl":null,"url":null,"abstract":"In this paper, we aim to investigate the properties of an almost\n$*$-Ricci-Bourguignon soliton (almost $*-$R-B-S for short) on a Kenmotsu\nmanifold (K-M). We start by proving that if a Kenmotsu manifold (K-M) obeys an\nalmost $*-$R-B-S, then the manifold is $\\eta$-Einstein. Furthermore, we\nestablish that if a $(\\kappa, -2)'$-nullity distribution, where $\\kappa<-1$,\nhas an almost $*$-Ricci-Bourguignon soliton (almost $*-$R-B-S), then the\nmanifold is Ricci flat. Moreover, we establish that if a K-M has almost\n$*$-Ricci-Bourguignon soliton gradient and the vector field $\\xi$ preserves the\nscalar curvature $r$, then the manifold is an Einstein manifold with a constant\nscalar curvature given by $r=-n(2n-1)$. Finaly, we have given en example of a\nalmost $*-$R-B-S gradient on the Kenmotsu manifold.","PeriodicalId":501190,"journal":{"name":"arXiv - PHYS - General Physics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we aim to investigate the properties of an almost $*$-Ricci-Bourguignon soliton (almost $*-$R-B-S for short) on a Kenmotsu manifold (K-M). We start by proving that if a Kenmotsu manifold (K-M) obeys an almost $*-$R-B-S, then the manifold is $\eta$-Einstein. Furthermore, we establish that if a $(\kappa, -2)'$-nullity distribution, where $\kappa<-1$, has an almost $*$-Ricci-Bourguignon soliton (almost $*-$R-B-S), then the manifold is Ricci flat. Moreover, we establish that if a K-M has almost $*$-Ricci-Bourguignon soliton gradient and the vector field $\xi$ preserves the scalar curvature $r$, then the manifold is an Einstein manifold with a constant scalar curvature given by $r=-n(2n-1)$. Finaly, we have given en example of a almost $*-$R-B-S gradient on the Kenmotsu manifold.
肯莫特流形上一种特殊孤子的分析
本文旨在研究 Kenmotsumanifold(K-M)上近$*$-Ricci-Bourguignon 孤子(简称近$*-$R-B-S)的性质。我们首先证明,如果一个肯莫特流形(K-M)服从近$*-$R-B-S,那么这个流形就是$\ea$-爱因斯坦流形。此外,我们还证明,如果一个$(\kappa, -2)'$ 空分布(其中$\kappa<-1$)有一个近乎$*$-Rici-Bourguignon孤子(近乎$*-$R-B-S),那么这个流形就是Ricci平坦的。此外,我们还确定,如果一个K-M具有近$*$-里奇-布吉尼翁孤子梯度,且向量场$\xi$保留了标曲率$r$,那么该流形就是爱因斯坦流形,其标曲率常数为$r=-n(2n-1)$。最后,我们举例说明了在 Kenmotsu 流形上的几乎 $*-$R-B-S 梯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信