Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity

Diego J. Cirilo-LombardoKeldysh Institute of the Russian Academy of Sciences and CONICET-UBA-INFINA, Norma G. SanchezCNRS and The Chalonge - Hector de Vega International School of Astrophysics
{"title":"Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity","authors":"Diego J. Cirilo-LombardoKeldysh Institute of the Russian Academy of Sciences and CONICET-UBA-INFINA, Norma G. SanchezCNRS and The Chalonge - Hector de Vega International School of Astrophysics","doi":"arxiv-2408.11078","DOIUrl":null,"url":null,"abstract":"A new formalism is introduced describe the physical and geometric content of\nquantum spacetime. It is based in the Minimum Group Representation Principle.\nNew results for entanglement and geometrical/topological phases are found and\nimplemented in cosmological and black hole space-times. Our main results here\nare: (i) The Berry phases for inflation, for the cosmological perturbations,\nand its expression in terms of observables, as the spectral scalar and tensor\nindices, $n_S$ an $n_T$, and their ratio $r$. The Berry phase for de Sitter\ninflation is imaginary, its sign describing the exponential acceleration. (ii)\nThe pure entangled states in the minimum group (metaplectic) $Mp(n)$\nrepresentation for quantum de Sitter space-time and black holes are found.\n(iii) For entanglement, the relation between the Schmidt type representation\nand the physical states of the $Mp(n)$ group is found: This is a new\nnon-diagonal coherent state representation complementary to the known Sudarshan\ndiagonal one. (iv) The mean $Mp(2)$ generator values are related to the\nspace-time topological charge. (v) The basic even and odd $n$ -sectors of the\nHilbert space are intrinsic to the quantum spacetime and its discrete levels\n(continuum for $n \\rightarrow \\infty$) and are it entangled. (vi) The gravity\nor cosmological domains on one side and another of the Planck scale are\nentangled. Examples: The primordial quantum trans-Planckian de Sitter vacuum\nand the late classical gravity de Sitter vacuum today; the central quantum\nreqion and the external classical region of black holes. The classical and\nquantum dual gravity regions of the space-time are entangled. (vii) The general\nclassical-quantum gravity duality is associated to the Metaplectic $Mp(n)$\ngroup symmetry which provides the complete full covering of the phase space and\nof the quantum space-time mapped from it.","PeriodicalId":501190,"journal":{"name":"arXiv - PHYS - General Physics","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new formalism is introduced describe the physical and geometric content of quantum spacetime. It is based in the Minimum Group Representation Principle. New results for entanglement and geometrical/topological phases are found and implemented in cosmological and black hole space-times. Our main results here are: (i) The Berry phases for inflation, for the cosmological perturbations, and its expression in terms of observables, as the spectral scalar and tensor indices, $n_S$ an $n_T$, and their ratio $r$. The Berry phase for de Sitter inflation is imaginary, its sign describing the exponential acceleration. (ii) The pure entangled states in the minimum group (metaplectic) $Mp(n)$ representation for quantum de Sitter space-time and black holes are found. (iii) For entanglement, the relation between the Schmidt type representation and the physical states of the $Mp(n)$ group is found: This is a new non-diagonal coherent state representation complementary to the known Sudarshan diagonal one. (iv) The mean $Mp(2)$ generator values are related to the space-time topological charge. (v) The basic even and odd $n$ -sectors of the Hilbert space are intrinsic to the quantum spacetime and its discrete levels (continuum for $n \rightarrow \infty$) and are it entangled. (vi) The gravity or cosmological domains on one side and another of the Planck scale are entangled. Examples: The primordial quantum trans-Planckian de Sitter vacuum and the late classical gravity de Sitter vacuum today; the central quantum reqion and the external classical region of black holes. The classical and quantum dual gravity regions of the space-time are entangled. (vii) The general classical-quantum gravity duality is associated to the Metaplectic $Mp(n)$ group symmetry which provides the complete full covering of the phase space and of the quantum space-time mapped from it.
量子引力中的纠缠和广义贝里几何相位
本文引入了一种新的形式主义来描述量子时空的物理和几何内容。在宇宙学和黑洞时空中发现并实现了纠缠和几何/拓扑相位的新结果。我们在这里的主要结果是:(i)宇宙学扰动的暴胀贝里相,及其用观测值(如光谱标量和张量指数 $n_S$ 和 $n_T$,以及它们的比值 $r$)表达。德西特膨胀的贝里相位是虚的,其符号描述了指数加速度。(ii)找到了量子德西特时空和黑洞的最小群(元映射)$Mp(n)$表示中的纯纠缠态。 (iii)对于纠缠,找到了施密特型表示和$Mp(n)$群物理状态之间的关系:这是一种新的非对角相干态表示,是对已知苏达山对角表示的补充。(iv) $Mp(2)$生成器的平均值与时空拓扑电荷有关。(v) 希尔伯特空间的基本偶数和奇数 $n$ 单元是量子时空及其离散水平(连续的 $n \rightarrow \infty$)的固有特性,并且是纠缠的。 (vi) 普朗克尺度一侧和另一侧的引力域或宇宙学域是纠缠的。例如:原始量子跨普朗克德西特真空和今天的晚期经典引力德西特真空;黑洞的中心量子问号和外部经典区域。(vii) 广义经典-量子引力二重性与 Metaplectic $Mp(n)$ 群对称性相关联,该对称性提供了相空间及其映射的量子时空的完整全覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信