Integrating cycleGAN and BERT for Chinese text style transfer

IF 3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chien-Hsing Chou, Cheng-Hou Chou, Yi-Zeng Hsieh, Tzu-Shien Yang
{"title":"Integrating cycleGAN and BERT for Chinese text style transfer","authors":"Chien-Hsing Chou, Cheng-Hou Chou, Yi-Zeng Hsieh, Tzu-Shien Yang","doi":"10.1007/s11042-024-20131-z","DOIUrl":null,"url":null,"abstract":"<p>In this study, we integrate the Bidirectional Encoder Representations from Transformers (BERT) model with the Cycle Generative Adversarial Network (CycleGAN) to create a system for Chinese text style transfer. Natural language processing (NLP) involves converting human languages into data interpretable by computers, enabling applications like text classification, chatbots, and dialogue systems. Recent advancements, such as Google's transformer model and the BERT technique, have significantly improved NLP capabilities through self-attention mechanisms and unsupervised pretraining. Text style transfer modifies the style of texts without altering their semantics. Previous methods like StyIns and models based on disentangled representation learning highlight the challenges of retaining text meaning during style transfer. Our system leverages CycleGAN’s unsupervised learning to convert unpaired data between wuxia and fantasy styles while preserving semantics. Using the pretrained BERT model from the Chinese Knowledge and Information Processing (CKIP) Lab, our experimental results demonstrate successful style conversion, maintaining the original meanings of texts. This integration of BERT and CycleGAN shows promise for further advancements in NLP applications.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-20131-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we integrate the Bidirectional Encoder Representations from Transformers (BERT) model with the Cycle Generative Adversarial Network (CycleGAN) to create a system for Chinese text style transfer. Natural language processing (NLP) involves converting human languages into data interpretable by computers, enabling applications like text classification, chatbots, and dialogue systems. Recent advancements, such as Google's transformer model and the BERT technique, have significantly improved NLP capabilities through self-attention mechanisms and unsupervised pretraining. Text style transfer modifies the style of texts without altering their semantics. Previous methods like StyIns and models based on disentangled representation learning highlight the challenges of retaining text meaning during style transfer. Our system leverages CycleGAN’s unsupervised learning to convert unpaired data between wuxia and fantasy styles while preserving semantics. Using the pretrained BERT model from the Chinese Knowledge and Information Processing (CKIP) Lab, our experimental results demonstrate successful style conversion, maintaining the original meanings of texts. This integration of BERT and CycleGAN shows promise for further advancements in NLP applications.

Abstract Image

将 cycleGAN 和 BERT 集成到中文文本样式转换中
在本研究中,我们将双向编码器变换器表征(BERT)模型与循环生成对抗网络(CycleGAN)相结合,创建了一个中文文本风格转换系统。自然语言处理(NLP)涉及将人类语言转换为计算机可解释的数据,从而实现文本分类、聊天机器人和对话系统等应用。最近的进步,如谷歌的转换器模型和 BERT 技术,通过自我关注机制和无监督预训练,大大提高了 NLP 的能力。文本风格转换可在不改变文本语义的情况下修改文本风格。以前的方法,如 StyIns 和基于分离表征学习的模型,都强调了在风格转换过程中保留文本意义的挑战。我们的系统利用 CycleGAN 的无监督学习功能,在保留语义的前提下在武侠和玄幻风格之间转换未配对的数据。利用中文知识与信息处理(CKIP)实验室预训练的 BERT 模型,我们的实验结果表明文体转换非常成功,保留了文本的原意。BERT 与 CycleGAN 的整合为进一步推进 NLP 应用带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multimedia Tools and Applications
Multimedia Tools and Applications 工程技术-工程:电子与电气
CiteScore
7.20
自引率
16.70%
发文量
2439
审稿时长
9.2 months
期刊介绍: Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed. Specific areas of interest include: - Multimedia Tools: - Multimedia Applications: - Prototype multimedia systems and platforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信