An autoencoder based unsupervised clustering approach to analyze the effect of E-learning on the mental health of Indian students during the Covid-19 pandemic
IF 3 4区 计算机科学Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"An autoencoder based unsupervised clustering approach to analyze the effect of E-learning on the mental health of Indian students during the Covid-19 pandemic","authors":"Pritha Banerjee, Chandan Jana, Jayita Saha, Chandreyee Chowdhury","doi":"10.1007/s11042-024-19983-2","DOIUrl":null,"url":null,"abstract":"<p>Due to the Covid-19 pandemic, the education system in India has changed to remote that is, online study mode. Though there are works on the effect of teaching learning on Indian students, the effect of online mode and associated mental state, particularly when the entire country is going through a crisis could not be found in the literature. Our goal is to analyze data and find some pattern through which we can understand the effectiveness of the online study and also try to figure out the stress level. The dataset we collected from 500 undergraduate college students during April-May, 2021 is in questionnaire format. Our contribution in this paper are - (i) publishing a dataset of student feedbacks, and (ii) designing a data processing pipeline involving autoencoders followed by clustering approach. The dataset is in text format so for our analysis we have converted the dataset into a numerical format using the concept of a binary bag of words. Dimensionality reduction is applied through autoencoder for an effective latent space representation. Finally, for finding patterns out of this dimensionally reduced feature space, we have applied unsupervised learning algorithms - kMeans and DBSCAN. A thorough analysis of the clustering process reveals that the absence of social communication in purely online education provokes isolation irrespective of the urban or rural background of the students. However, it could supplement offline classes as a substantial number of students welcomed the concept of online learning as reported in the data.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-19983-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the Covid-19 pandemic, the education system in India has changed to remote that is, online study mode. Though there are works on the effect of teaching learning on Indian students, the effect of online mode and associated mental state, particularly when the entire country is going through a crisis could not be found in the literature. Our goal is to analyze data and find some pattern through which we can understand the effectiveness of the online study and also try to figure out the stress level. The dataset we collected from 500 undergraduate college students during April-May, 2021 is in questionnaire format. Our contribution in this paper are - (i) publishing a dataset of student feedbacks, and (ii) designing a data processing pipeline involving autoencoders followed by clustering approach. The dataset is in text format so for our analysis we have converted the dataset into a numerical format using the concept of a binary bag of words. Dimensionality reduction is applied through autoencoder for an effective latent space representation. Finally, for finding patterns out of this dimensionally reduced feature space, we have applied unsupervised learning algorithms - kMeans and DBSCAN. A thorough analysis of the clustering process reveals that the absence of social communication in purely online education provokes isolation irrespective of the urban or rural background of the students. However, it could supplement offline classes as a substantial number of students welcomed the concept of online learning as reported in the data.
期刊介绍:
Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed.
Specific areas of interest include:
- Multimedia Tools:
- Multimedia Applications:
- Prototype multimedia systems and platforms