Fatma Khallaf, Walid El-Shafai, El-Sayed M. El-Rabaie, Fathi E. Abd El-Samie
{"title":"Blockchain-based color medical image cryptosystem for industrial Internet of Healthcare Things (IoHT)","authors":"Fatma Khallaf, Walid El-Shafai, El-Sayed M. El-Rabaie, Fathi E. Abd El-Samie","doi":"10.1007/s11042-023-16777-w","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the proliferation of smart devices and associated technologies, such as the Internet of Things (IoT), Industrial Internet of Things (IIoT), and Internet of Medical Things (IoMT), has witnessed a substantial growth. However, the limited processing power and storage capacity of smart devices make them vulnerable to cyberattacks, rendering traditional security and cryptography techniques inadequate. To address these challenges, blockchain (BC) technology has emerged as a promising solution. This study introduces an efficient framework for the Internet of Healthcare Things (IoHT), presenting a novel cryptosystem for color medical images using BC technology in conjunction with the IoT, Secure Hash Algorithm 256-bit (SHA256), shuffling, and bitwise XOR operations. The encryption scheme is specifically designed for an IIoT grid network computing system, relying on diffusion and confusion principles. In this paper, the proposed cryptosystem strength is evaluated against differential attacks with several comprehensive metrics. Simulation results and theoretical analysis demonstrate the cryptosystem effectiveness, showcasing its ability to provide high levels of security and immunity to data leakage. The proposed cryptosystem offers a versatile range of technical solutions and strategies that are adaptable to various scenarios. The evaluation metrics, with approximate values of 99.61% for Number of Pixels Change Rate (NPCR), 33.46% for Unified Average Changed Intensity (UACI), and 8 for information entropy, closely align with the desired ideal outcomes. Consequently, this paper contributes to the advancement of secure and private systems for medical image encryption based on BC technology, potentially mitigating the risks associated with cyberattacks on smart medical devices.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-023-16777-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the proliferation of smart devices and associated technologies, such as the Internet of Things (IoT), Industrial Internet of Things (IIoT), and Internet of Medical Things (IoMT), has witnessed a substantial growth. However, the limited processing power and storage capacity of smart devices make them vulnerable to cyberattacks, rendering traditional security and cryptography techniques inadequate. To address these challenges, blockchain (BC) technology has emerged as a promising solution. This study introduces an efficient framework for the Internet of Healthcare Things (IoHT), presenting a novel cryptosystem for color medical images using BC technology in conjunction with the IoT, Secure Hash Algorithm 256-bit (SHA256), shuffling, and bitwise XOR operations. The encryption scheme is specifically designed for an IIoT grid network computing system, relying on diffusion and confusion principles. In this paper, the proposed cryptosystem strength is evaluated against differential attacks with several comprehensive metrics. Simulation results and theoretical analysis demonstrate the cryptosystem effectiveness, showcasing its ability to provide high levels of security and immunity to data leakage. The proposed cryptosystem offers a versatile range of technical solutions and strategies that are adaptable to various scenarios. The evaluation metrics, with approximate values of 99.61% for Number of Pixels Change Rate (NPCR), 33.46% for Unified Average Changed Intensity (UACI), and 8 for information entropy, closely align with the desired ideal outcomes. Consequently, this paper contributes to the advancement of secure and private systems for medical image encryption based on BC technology, potentially mitigating the risks associated with cyberattacks on smart medical devices.
期刊介绍:
Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed.
Specific areas of interest include:
- Multimedia Tools:
- Multimedia Applications:
- Prototype multimedia systems and platforms