Research on marine flexible biological target detection based on improved YOLOv8 algorithm

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yu Tian, Yanwen Liu, Baohang Lin, Peng Li
{"title":"Research on marine flexible biological target detection based on improved YOLOv8 algorithm","authors":"Yu Tian, Yanwen Liu, Baohang Lin, Peng Li","doi":"10.7717/peerj-cs.2271","DOIUrl":null,"url":null,"abstract":"To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images’ foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model’s proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model’s feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes’ quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2271","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images’ foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model’s proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model’s feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes’ quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection.
基于改进型 YOLOv8 算法的海洋柔性生物目标探测研究
针对海洋柔性生物实体的可变形性导致目标检测结果不理想的挑战,本研究引入了一种专门用于检测海洋柔性生物目标的算法。首先,我们编制了一个包含海洋柔性生物目标的数据集,并开发了一种对比度受限自适应直方图均衡(CLAHE)算法,辅以边界检测增强模块,以改善水下图像质量,突出图像前景与背景之间的区别。这种增强功能可减轻在检测海洋柔性生物实体时遇到的前景-背景相似性问题。此外,在 YOLOv8n 算法框架内,拟议的适应性调整采用了可变形卷积网络(DCN)网络模块来替代 C2f 模块,从而提高了模型捕捉几何变换和集中于关键区域的能力。采用 RepBi-PAN 架构增强了 Neck 网络模块,提高了其综合和强调灵活生物目标基本特征的能力。为了提高模型的特征信息处理效率,我们整合了 SimAM 注意机制。最后,为了减少数据集中劣质标签的不利影响,我们提倡使用 WIoU(Wise-IoU)作为边界框损失函数,以完善锚点框的质量评估。模拟实验表明,与传统的 YOLOv8n 算法相比,我们的方法明显提高了海洋柔性生物目标检测的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信