Design of compensation algorithms for zero padding and its application to a patch based deep neural network

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Safi Ullah, Seong-Ho Song
{"title":"Design of compensation algorithms for zero padding and its application to a patch based deep neural network","authors":"Safi Ullah, Seong-Ho Song","doi":"10.7717/peerj-cs.2287","DOIUrl":null,"url":null,"abstract":"In this article, compensation algorithms for zero padding are suggested to enhance the performance of deep convolutional neural networks. By considering the characteristics of convolving filters, the proposed methods efficiently compensate convolutional output errors due to zero padded inputs in a convolutional neural network. Primarily the algorithms are developed for patch based SRResNet for Single Image Super Resolution and the performance comparison is carried out using the SRResNet model but due to generalized nature of the padding algorithms its efficacy is tested in U-Net for Lung CT Image Segmentation. The proposed algorithms show better performance than the existing algorithm called partial convolution based padding (PCP), developed recently.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"106 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2287","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, compensation algorithms for zero padding are suggested to enhance the performance of deep convolutional neural networks. By considering the characteristics of convolving filters, the proposed methods efficiently compensate convolutional output errors due to zero padded inputs in a convolutional neural network. Primarily the algorithms are developed for patch based SRResNet for Single Image Super Resolution and the performance comparison is carried out using the SRResNet model but due to generalized nature of the padding algorithms its efficacy is tested in U-Net for Lung CT Image Segmentation. The proposed algorithms show better performance than the existing algorithm called partial convolution based padding (PCP), developed recently.
零填充补偿算法设计及其在基于补丁的深度神经网络中的应用
本文提出了零填充补偿算法,以提高深度卷积神经网络的性能。通过考虑卷积滤波器的特性,所提出的方法能有效补偿卷积神经网络中由于零填充输入造成的卷积输出误差。这些算法主要是为基于补丁的 SRResNet 单图像超分辨率开发的,并使用 SRResNet 模型进行了性能比较,但由于填充算法的通用性,其功效在用于肺部 CT 图像分割的 U-Net 中进行了测试。与最近开发的基于部分卷积的填充算法(PCP)相比,所提出的算法显示出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信