{"title":"Local Bootstrap for Network Data","authors":"Tianhai Zu, Yichen Qin","doi":"10.1093/biomet/asae046","DOIUrl":null,"url":null,"abstract":"SUMMARY In network analysis, we frequently need to conduct inference for network parameters based on one observed network. Since the sampling distribution of the statistic is often unknown, we need to rely on the bootstrap. However, due to the complex dependence structure among vertices, existing bootstrap methods often yield unsatisfactory performance, especially under small or moderate sample sizes. To this end, we propose a new network bootstrap procedure, termed local bootstrap, to estimate the standard errors of network statistics. We propose to resample the observed vertices along with their neighbor sets, and reconstruct the edges between the resampled vertices by drawing from the set of edges connecting their neighbor sets. We justify the proposed method theoretically with desirable asymptotic properties for statistics such as motif density, and demonstrate its excellent numerical performance in small and moderate sample sizes. Our method includes several existing methods, such as the empirical graphon bootstrap, as special cases. We investigate the advantages of the proposed methods over the existing methods through the lens of edge randomness, vertex heterogeneity, neighbor set size, which shed some light on the complex issue of network bootstrapping.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asae046","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
SUMMARY In network analysis, we frequently need to conduct inference for network parameters based on one observed network. Since the sampling distribution of the statistic is often unknown, we need to rely on the bootstrap. However, due to the complex dependence structure among vertices, existing bootstrap methods often yield unsatisfactory performance, especially under small or moderate sample sizes. To this end, we propose a new network bootstrap procedure, termed local bootstrap, to estimate the standard errors of network statistics. We propose to resample the observed vertices along with their neighbor sets, and reconstruct the edges between the resampled vertices by drawing from the set of edges connecting their neighbor sets. We justify the proposed method theoretically with desirable asymptotic properties for statistics such as motif density, and demonstrate its excellent numerical performance in small and moderate sample sizes. Our method includes several existing methods, such as the empirical graphon bootstrap, as special cases. We investigate the advantages of the proposed methods over the existing methods through the lens of edge randomness, vertex heterogeneity, neighbor set size, which shed some light on the complex issue of network bootstrapping.
期刊介绍:
Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.