{"title":"Sensitivity models and bounds under sequential unmeasured confounding in longitudinal studies","authors":"Zhiqiang Tan","doi":"10.1093/biomet/asae044","DOIUrl":null,"url":null,"abstract":"Consider sensitivity analysis for causal inference in a longitudinal study with time-varying treatments and covariates. It is of interest to assess the worst-case possible values of counterfactual-outcome means and average treatment effects under sequential unmeasured confounding. We formulate several multi-period sensitivity models to relax the corresponding versions of the assumption of sequential non-confounding. The primary sensitivity model involves only counterfactual outcomes, whereas the joint and product sensitivity models involve both counterfactual covariates and outcomes. We establish and compare explicit representations for the sharp and conservative bounds at the population level through convex optimization, depending only on the observed data. These results provide for the first time a satisfactory generalization from the marginal sensitivity model in the cross-sectional setting.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asae044","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Consider sensitivity analysis for causal inference in a longitudinal study with time-varying treatments and covariates. It is of interest to assess the worst-case possible values of counterfactual-outcome means and average treatment effects under sequential unmeasured confounding. We formulate several multi-period sensitivity models to relax the corresponding versions of the assumption of sequential non-confounding. The primary sensitivity model involves only counterfactual outcomes, whereas the joint and product sensitivity models involve both counterfactual covariates and outcomes. We establish and compare explicit representations for the sharp and conservative bounds at the population level through convex optimization, depending only on the observed data. These results provide for the first time a satisfactory generalization from the marginal sensitivity model in the cross-sectional setting.
期刊介绍:
Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.