Rank Zero Segre Integrals on Hilbert Schemes of Points on Surfaces

Pub Date : 2024-08-13 DOI:10.1093/imrn/rnae173
Yao Yuan
{"title":"Rank Zero Segre Integrals on Hilbert Schemes of Points on Surfaces","authors":"Yao Yuan","doi":"10.1093/imrn/rnae173","DOIUrl":null,"url":null,"abstract":"The generating function of the Segre integrals on Hilbert schemes of points on a surface $X$ can be determined by five universal series $A_{0}(z)$, $A_{1}(z)$, $A_{2}(z)$, $A_{3}(z)$, $A_{4}(z)$, due to the result of Ellingsrud–Göttsche–Lehn. These five series do not depend on the surface $X$ and depend on the element $\\alpha \\in K(X)$, to which the Segre integrals are associated, only through the rank. Marian–Oprea–Pandharipande have determined $A_{0}(z),A_{1}(z),A_{2}(z)$ for all ranks. For rank 0, it is easy to see $A_{4}(z)=1$. Marian–Oprea–Pandharipande also conjectured that $A_{3}(z)=A_{0}(z)A_{1}(z)$ for rank 0. We prove this conjecture by showing that when $X$ is the projective plan, the Segre integrals associated to the structure sheaf of a curve in the anti-canoncial class are all zero. Hence, the rank zero Segre integrals on the Hilbert schemes of points for all surfaces are determined.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The generating function of the Segre integrals on Hilbert schemes of points on a surface $X$ can be determined by five universal series $A_{0}(z)$, $A_{1}(z)$, $A_{2}(z)$, $A_{3}(z)$, $A_{4}(z)$, due to the result of Ellingsrud–Göttsche–Lehn. These five series do not depend on the surface $X$ and depend on the element $\alpha \in K(X)$, to which the Segre integrals are associated, only through the rank. Marian–Oprea–Pandharipande have determined $A_{0}(z),A_{1}(z),A_{2}(z)$ for all ranks. For rank 0, it is easy to see $A_{4}(z)=1$. Marian–Oprea–Pandharipande also conjectured that $A_{3}(z)=A_{0}(z)A_{1}(z)$ for rank 0. We prove this conjecture by showing that when $X$ is the projective plan, the Segre integrals associated to the structure sheaf of a curve in the anti-canoncial class are all zero. Hence, the rank zero Segre integrals on the Hilbert schemes of points for all surfaces are determined.
分享
查看原文
曲面上点的希尔伯特方案上的零级塞格雷积分
根据埃林斯鲁德-哥特谢-雷恩(Ellingsrud-Göttsche-Lehn)的结果,表面 $X$ 上点的希尔伯特方案上的塞格雷积分的生成函数可以由五个普遍级数 $A_{0}(z)$、$A_{1}(z)$、$A_{2}(z)$、$A_{3}(z)$、$A_{4}(z)$ 确定。这五个数列并不依赖于表面 $X$,而只通过秩依赖于 K(X)$ 中的元素 $alpha \(α)。Marian-Oprea-Pandharipande 确定了所有秩的 $A_{0}(z),A_{1}(z),A_{2}(z)$。对于秩 0,很容易看出 $A_{4}(z)=1$。玛丽安-奥普雷亚-潘达里潘德还猜想,对于秩 0,$A_{3}(z)=A_{0}(z)A_{1}(z)$。我们证明了这一猜想,即当 $X$ 是投影面时,与反规范类中曲线的结构 sheaf 相关的 Segre 积分都为零。因此,所有曲面的点的希尔伯特方案上的秩零赛格雷积分都是确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信