{"title":"Gompf’s Cork and Heegaard Floer Homology","authors":"Irving Dai, Abhishek Mallick, Ian Zemke","doi":"10.1093/imrn/rnae180","DOIUrl":null,"url":null,"abstract":"Gompf showed that for $K$ in a certain family of double-twist knots, the swallow-follow operation makes $1/n$-surgery on $K \\# -K$ into a cork boundary. We derive a general Floer-theoretic condition on $K$ under which this is the case. Our formalism allows us to produce many further examples of corks, partially answering a question of Gompf. Unlike Gompf’s method, our proof does not rely on any closed 4-manifold invariants or effective embeddings, and also generalizes to other diffeomorphisms.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"734 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae180","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gompf showed that for $K$ in a certain family of double-twist knots, the swallow-follow operation makes $1/n$-surgery on $K \# -K$ into a cork boundary. We derive a general Floer-theoretic condition on $K$ under which this is the case. Our formalism allows us to produce many further examples of corks, partially answering a question of Gompf. Unlike Gompf’s method, our proof does not rely on any closed 4-manifold invariants or effective embeddings, and also generalizes to other diffeomorphisms.
期刊介绍:
International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.