A Positive Proportion of Monic Odd-Degree Hyperelliptic Curves of Genus g ≥ 4 Have no Unexpected Quadratic Points

Pub Date : 2024-09-03 DOI:10.1093/imrn/rnae184
Jef Laga, Ashvin A Swaminathan
{"title":"A Positive Proportion of Monic Odd-Degree Hyperelliptic Curves of Genus g ≥ 4 Have no Unexpected Quadratic Points","authors":"Jef Laga, Ashvin A Swaminathan","doi":"10.1093/imrn/rnae184","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{F}_{g}$ be the family of monic odd-degree hyperelliptic curves of genus $g$ over ${\\mathbb{Q}}$. Poonen and Stoll have shown that for every $g \\geq 3$, a positive proportion of curves in $\\mathcal{F}_{g}$ have no rational points except the point at infinity. In this note, we prove the analogue for quadratic points: for each $g\\geq 4$, a positive proportion of curves in $\\mathcal{F}_{g}$ have no points defined over quadratic extensions except those that arise by pulling back rational points from $\\mathbb{P}^{1}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathcal{F}_{g}$ be the family of monic odd-degree hyperelliptic curves of genus $g$ over ${\mathbb{Q}}$. Poonen and Stoll have shown that for every $g \geq 3$, a positive proportion of curves in $\mathcal{F}_{g}$ have no rational points except the point at infinity. In this note, we prove the analogue for quadratic points: for each $g\geq 4$, a positive proportion of curves in $\mathcal{F}_{g}$ have no points defined over quadratic extensions except those that arise by pulling back rational points from $\mathbb{P}^{1}$.
分享
查看原文
属 g ≥ 4 的正比例单奇异度超椭圆曲线没有意外的二次方点
让 $mathcal{F}_{g}$ 是${mathbb{Q}}$上属$g$的单奇数度超椭圆曲线族。Poonen 和 Stoll 证明了对于每 $g \geq 3$,$\mathcal{F}_{g}$ 中的正比例曲线除了无穷远处的点之外没有有理点。在本注中,我们证明了二次有理点的类似情况:对于每个 $g\geq 4$,$\mathcal{F}_{g}$ 中的正比例曲线除了从 $\mathbb{P}^{1}$ 拉回有理点之外,没有定义在二次展开上的点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信