Tate Cohomology of Whittaker Lattices and Base Change of Generic Representations of GLn

Pub Date : 2024-08-31 DOI:10.1093/imrn/rnae183
Santosh Nadimpalli, Sabyasachi Dhar
{"title":"Tate Cohomology of Whittaker Lattices and Base Change of Generic Representations of GLn","authors":"Santosh Nadimpalli, Sabyasachi Dhar","doi":"10.1093/imrn/rnae183","DOIUrl":null,"url":null,"abstract":"Let $p$ and $l$ be two distinct odd primes, and let $n\\geq 2$ be a positive integer. Let $E$ be a finite Galois extension of degree $l$ of a $p$-adic field $F$. Let $q$ be the cardinality of the residue field of $F$. Let $\\pi _{F}$ be an integral $l$-adic generic representation of $\\mathrm{GL}_{n}(F)$, and let $\\pi _{E}$ be the base change of $\\pi _{F}$. Let $J_{l}(\\pi _{F})$ (resp. $J_{l}(\\pi _{E})$) be the unique generic component of the mod-$l$ reduction $r_{l}(\\pi _{F})$ (resp. $r_{l}(\\pi _{E})$). Assuming that $l$ does not divide $|\\mathrm{GL}_{n-1}(\\mathbb{F}_{q})|$, we prove that the Frobenius twist of $J_{l}(\\pi _{F})$ is the unique generic subquotient of the Tate cohomology group $\\widehat{H}^{0}(\\mathrm{Gal}(E/F), J_{l}(\\pi _{E}))$—considered as a representation of $\\mathrm{GL}_{n}(F)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $p$ and $l$ be two distinct odd primes, and let $n\geq 2$ be a positive integer. Let $E$ be a finite Galois extension of degree $l$ of a $p$-adic field $F$. Let $q$ be the cardinality of the residue field of $F$. Let $\pi _{F}$ be an integral $l$-adic generic representation of $\mathrm{GL}_{n}(F)$, and let $\pi _{E}$ be the base change of $\pi _{F}$. Let $J_{l}(\pi _{F})$ (resp. $J_{l}(\pi _{E})$) be the unique generic component of the mod-$l$ reduction $r_{l}(\pi _{F})$ (resp. $r_{l}(\pi _{E})$). Assuming that $l$ does not divide $|\mathrm{GL}_{n-1}(\mathbb{F}_{q})|$, we prove that the Frobenius twist of $J_{l}(\pi _{F})$ is the unique generic subquotient of the Tate cohomology group $\widehat{H}^{0}(\mathrm{Gal}(E/F), J_{l}(\pi _{E}))$—considered as a representation of $\mathrm{GL}_{n}(F)$.
分享
查看原文
惠特克网格的泰特同调与 GLn 通用表示的基底变化
让 $p$ 和 $l$ 是两个不同的奇数素数,让 $n\geq 2$ 是一个正整数。让 $E$ 是 $p$-adic 字段 $F$ 的度数为 $l$ 的有限伽罗瓦扩展。让 $q$ 是 $F$ 的残差域的万有引力.让 $\pi _{F}$ 是 $\mathrm{GL}_{n}(F)$ 的一个完整的 $l$-adic 通式表示,让 $\pi _{E}$ 是 $\pi _{F}$ 的基变化。让 $J_{l}(\pi _{F})$ (resp. $J_{l}(\pi _{E})$) 成为 mod-$l$ 还原 $r_{l}(\pi _{F})$ (resp. $r_{l}(\pi _{E})$) 的唯一通项。假定 $l$ 不除 $|\mathrm{GL}_{n-1}(\mathbb{F}_{q})|$,我们证明 $J_{l}(\pi _{F})$ 的弗罗贝尼斯捻是泰特同调群 $\widehat{H}^{0}(\mathrm{Gal}(E/F)) 的唯一通项子曲、J_{l}(\pi _{E}))$ 被视为 $\mathrm{GL}_{n}(F)$ 的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信