{"title":"Zero-Dimensional Shimura Varieties and Central Derivatives of Eisenstein Series","authors":"Siddarth Sankaran","doi":"10.1093/imrn/rnae179","DOIUrl":null,"url":null,"abstract":"We formulate and prove a version of the arithmetic Siegel–Weil formula for (zero dimensional) Shimura varieties attached to tori, equipped with some additional data. More precisely, we define a family of “special” divisors in terms of Green functions at archimedean and non-archimedean places and prove that their degrees coincide with the Fourier coefficients of the central derivative of an Eisenstein series. The proof relies on the usual Siegel–Weil formula to provide a direct link between both sides of the identity, and in some sense, offers a more conceptual point of view on prior results in the literature.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"6 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae179","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We formulate and prove a version of the arithmetic Siegel–Weil formula for (zero dimensional) Shimura varieties attached to tori, equipped with some additional data. More precisely, we define a family of “special” divisors in terms of Green functions at archimedean and non-archimedean places and prove that their degrees coincide with the Fourier coefficients of the central derivative of an Eisenstein series. The proof relies on the usual Siegel–Weil formula to provide a direct link between both sides of the identity, and in some sense, offers a more conceptual point of view on prior results in the literature.
期刊介绍:
International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.