{"title":"Half-Isolated Zeros and Zero-Density Estimates","authors":"James Maynard, Kyle Pratt","doi":"10.1093/imrn/rnae191","DOIUrl":null,"url":null,"abstract":"We introduce a new method to detect the zeros of the Riemann zeta function, which is sensitive to the vertical distribution of the zeros. This allows us to prove there are few “half-isolated” zeros. By combining this with classical methods, we improve the Ingham–Huxley zero-density estimate under the assumption that the non-trivial zeros of the zeta function are restricted to lie on a finite number of fixed vertical lines. This has new consequences for primes in short intervals under the same assumption.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"24 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae191","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a new method to detect the zeros of the Riemann zeta function, which is sensitive to the vertical distribution of the zeros. This allows us to prove there are few “half-isolated” zeros. By combining this with classical methods, we improve the Ingham–Huxley zero-density estimate under the assumption that the non-trivial zeros of the zeta function are restricted to lie on a finite number of fixed vertical lines. This has new consequences for primes in short intervals under the same assumption.
期刊介绍:
International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.