Half-Isolated Zeros and Zero-Density Estimates

IF 0.9 2区 数学 Q2 MATHEMATICS
James Maynard, Kyle Pratt
{"title":"Half-Isolated Zeros and Zero-Density Estimates","authors":"James Maynard, Kyle Pratt","doi":"10.1093/imrn/rnae191","DOIUrl":null,"url":null,"abstract":"We introduce a new method to detect the zeros of the Riemann zeta function, which is sensitive to the vertical distribution of the zeros. This allows us to prove there are few “half-isolated” zeros. By combining this with classical methods, we improve the Ingham–Huxley zero-density estimate under the assumption that the non-trivial zeros of the zeta function are restricted to lie on a finite number of fixed vertical lines. This has new consequences for primes in short intervals under the same assumption.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"24 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae191","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new method to detect the zeros of the Riemann zeta function, which is sensitive to the vertical distribution of the zeros. This allows us to prove there are few “half-isolated” zeros. By combining this with classical methods, we improve the Ingham–Huxley zero-density estimate under the assumption that the non-trivial zeros of the zeta function are restricted to lie on a finite number of fixed vertical lines. This has new consequences for primes in short intervals under the same assumption.
半隔离零点和零密度估计
我们引入了一种检测黎曼zeta函数零点的新方法,这种方法对零点的垂直分布很敏感。这使我们能够证明 "半孤立 "零点的数量很少。通过将这一方法与经典方法相结合,我们改进了英格汉-赫胥黎零密度估计,假设zeta函数的非琐零点被限制在有限数量的固定垂直线上。在同样的假设下,这对短区间内的素数有新的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信