On the Dimension of Limit Sets on ℙ(ℝ3) via Stationary Measures: Variational Principles and Applications

IF 0.9 2区 数学 Q2 MATHEMATICS
Yuxiang Jiao, Jialun Li, Wenyu Pan, Disheng Xu
{"title":"On the Dimension of Limit Sets on ℙ(ℝ3) via Stationary Measures: Variational Principles and Applications","authors":"Yuxiang Jiao, Jialun Li, Wenyu Pan, Disheng Xu","doi":"10.1093/imrn/rnae190","DOIUrl":null,"url":null,"abstract":"This paper investigates the (semi)group action of $\\textrm{SL}_{n}({\\mathbb R})$ on ${\\mathbb P}({\\mathbb R}^{n})$, a primary example of non-conformal, non-linear, and non-strictly contracting action. We establish variational principles of the affinity exponent for two main examples: the Borel Anosov representations and the Rauzy gasket. In [ 32], they obtain a dimension formula for the stationary measures on ${\\mathbb P}({\\mathbb R}^{3})$. Combined with our result, it allows us to study the Hausdorff dimension of limit sets of Anosov representations in $\\textrm{SL}_{3}({\\mathbb R})$ and the Rauzy gasket. It yields the equality between the Hausdorff dimensions and the affinity exponents in both settings, generalizing the classical Patterson–Sullivan formula. In the appendix, we improve the numerical lower bound of the Hausdorff dimension of Rauzy gasket to $1.5$.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"402 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae190","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the (semi)group action of $\textrm{SL}_{n}({\mathbb R})$ on ${\mathbb P}({\mathbb R}^{n})$, a primary example of non-conformal, non-linear, and non-strictly contracting action. We establish variational principles of the affinity exponent for two main examples: the Borel Anosov representations and the Rauzy gasket. In [ 32], they obtain a dimension formula for the stationary measures on ${\mathbb P}({\mathbb R}^{3})$. Combined with our result, it allows us to study the Hausdorff dimension of limit sets of Anosov representations in $\textrm{SL}_{3}({\mathbb R})$ and the Rauzy gasket. It yields the equality between the Hausdorff dimensions and the affinity exponents in both settings, generalizing the classical Patterson–Sullivan formula. In the appendix, we improve the numerical lower bound of the Hausdorff dimension of Rauzy gasket to $1.5$.
通过固定量论ℙ(ℝ3)上极限集的维度:变分原理及应用
本文研究了$\textrm{SL}_{n}({\mathbb R})$对${mathbb P}({\mathbb R}^{n})$的(半)群作用,这是非共形、非线性和非严格收缩作用的一个主要例子。我们为两个主要例子建立了亲和指数的变分原理:玻尔阿诺索夫表征和劳齐垫圈。在 [ 32] 中,他们得到了 ${\mathbb P}({\mathbb R}^{3})$ 上静止量的维度公式。结合我们的结果,我们就可以研究 $\textrm{SL}_{3}({\mathbb R}^{3}) $ 和 Rauzy 垫圈中阿诺索夫表示的极限集的豪斯多夫维度。它得出了这两种情况下的豪斯多夫维数与亲和指数之间的相等关系,推广了经典的帕特森-沙利文(Patterson-Sullivan)公式。在附录中,我们将 Rauzy 垫圈的 Hausdorff 维数下限改进为 1.5$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信