Bipartite determinantal ideals and concurrent vertex maps

Pub Date : 2024-08-22 DOI:10.1007/s10801-024-01351-w
Li Li
{"title":"Bipartite determinantal ideals and concurrent vertex maps","authors":"Li Li","doi":"10.1007/s10801-024-01351-w","DOIUrl":null,"url":null,"abstract":"<p>Bipartite determinantal ideals are introduced in Illian and Li (Gröbner basis for the double determinantal ideals, http://arxiv.org/abs/2305.01724) as a vast generalization of the classical determinantal ideals intensively studied in commutative algebra, algebraic geometry, representation theory, and combinatorics. We introduce a combinatorial model called concurrent vertex maps to describe the Stanley–Reisner complex of the initial ideal of any bipartite determinantal ideal, and study properties and applications of this model including vertex decomposability, shelling orders, formulas of the Hilbert series, and <i>h</i>-polynomials.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01351-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bipartite determinantal ideals are introduced in Illian and Li (Gröbner basis for the double determinantal ideals, http://arxiv.org/abs/2305.01724) as a vast generalization of the classical determinantal ideals intensively studied in commutative algebra, algebraic geometry, representation theory, and combinatorics. We introduce a combinatorial model called concurrent vertex maps to describe the Stanley–Reisner complex of the initial ideal of any bipartite determinantal ideal, and study properties and applications of this model including vertex decomposability, shelling orders, formulas of the Hilbert series, and h-polynomials.

Abstract Image

分享
查看原文
二方行列式理想和并发顶点映射
二方行列式理想在 Illian 和 Li (Gröbner basis for the double determinantal ideals, http://arxiv.org/abs/2305.01724) 中被引入,作为在交换代数、代数几何、表示论和组合学中深入研究的经典行列式理想的广义概括。我们引入了一种称为并发顶点映射的组合模型来描述任何双行列式理想的初始理想的 Stanley-Reisner 复数,并研究了这一模型的性质和应用,包括顶点可分解性、脱壳阶、希尔伯特数列公式和 h 多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信