Finite 4-geodesic-transitive graphs with bounded girth

Pub Date : 2024-09-09 DOI:10.1007/s10801-024-01358-3
Wei Jin, Li Tan
{"title":"Finite 4-geodesic-transitive graphs with bounded girth","authors":"Wei Jin, Li Tan","doi":"10.1007/s10801-024-01358-3","DOIUrl":null,"url":null,"abstract":"<p>Praeger and the first author in Jin and Praeger (J Combin Theory Ser A 178:105349, 2021) asked the following problem: classify <i>s</i>-geodesic-transitive graphs of girth <span>\\(2s-1\\)</span> or <span>\\(2s-2\\)</span>, where <span>\\(s=4,5,6,7,8\\)</span>. In this paper, we study the <span>\\(s=4\\)</span> case, that is, study the family of finite (<i>G</i>, 4)-geodesic-transitive graphs of girth 6 or 7 for some group <i>G</i> of automorphisms. A reduction result on this family of graphs is first given. Let <i>N</i> be a normal subgroup of <i>G</i> which has at least 3 orbits on the vertex set. We show that such a graph <span>\\(\\Gamma \\)</span> is a cover of its quotient <span>\\(\\Gamma _N\\)</span> modulo the <i>N</i>-orbits and either <span>\\(\\Gamma _N\\)</span> is (<i>G</i>/<i>N</i>, <i>s</i>)-geodesic-transitive where <span>\\(s=\\min \\{4,\\textrm{diam}(\\Gamma _N)\\}\\ge 3\\)</span>, or <span>\\(\\Gamma _N\\)</span> is a (<i>G</i>/<i>N</i>, 2)-arc-transitive strongly regular graph. Next, using the classification of 2-arc-transitive strongly regular graphs, we determine all the (<i>G</i>, 4)-geodesic-transitive covers <span>\\(\\Gamma \\)</span> when <span>\\(\\Gamma _N\\)</span> is strongly regular.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01358-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Praeger and the first author in Jin and Praeger (J Combin Theory Ser A 178:105349, 2021) asked the following problem: classify s-geodesic-transitive graphs of girth \(2s-1\) or \(2s-2\), where \(s=4,5,6,7,8\). In this paper, we study the \(s=4\) case, that is, study the family of finite (G, 4)-geodesic-transitive graphs of girth 6 or 7 for some group G of automorphisms. A reduction result on this family of graphs is first given. Let N be a normal subgroup of G which has at least 3 orbits on the vertex set. We show that such a graph \(\Gamma \) is a cover of its quotient \(\Gamma _N\) modulo the N-orbits and either \(\Gamma _N\) is (G/Ns)-geodesic-transitive where \(s=\min \{4,\textrm{diam}(\Gamma _N)\}\ge 3\), or \(\Gamma _N\) is a (G/N, 2)-arc-transitive strongly regular graph. Next, using the classification of 2-arc-transitive strongly regular graphs, we determine all the (G, 4)-geodesic-transitive covers \(\Gamma \) when \(\Gamma _N\) is strongly regular.

分享
查看原文
具有有界周长的有限 4- 大地遍历图
Praeger 和第一作者在 Jin and Praeger (J Combin Theory Ser A 178:105349, 2021) 中提出了以下问题:分类周长为 \(2s-1\) 或 \(2s-2\) 的 s 节点变换图,其中 \(s=4,5,6,7,8\).在本文中,我们研究的是\(s=4\)的情况,也就是研究对于某个自动形群 G 而言周长为 6 或 7 的有限(G,4)-大地遍历图形族。首先给出这个图形族的还原结果。让 N 是顶点集上至少有 3 个轨道的 G 的正则子群。我们证明这样的图\(\Gamma \)是它的商\(\Gamma _N\)的覆盖,并且\(\Gamma _N\)是(G/N、s=min \{4,\textrm{diam}(\Gamma _N)\}ge 3\), 或者 \(\Gamma _N\) 是一个(G/N, 2)弧遍历强规则图。接下来,利用2-弧-传递强正则图的分类,我们确定了当\(\Gamma _N\)是强正则图时所有的(G,4)-大地-传递盖\(\Gamma \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信