Alexander Borys, Barbara Wieczorek, Anka Nicke, Jutta Walstab
{"title":"Long‐term assessment of macro‐ and micronutrients in foliage of European beech (Fagus sylvatica L.) in thinned versus unmanaged old‐growth stands","authors":"Alexander Borys, Barbara Wieczorek, Anka Nicke, Jutta Walstab","doi":"10.1002/jpln.202400144","DOIUrl":null,"url":null,"abstract":"BackgroundScience‐based decisions regarding forest management require the knowledge of the impact of thinning regimens on the forests’ vitality and resilience. There is no systematic study analysing the role of forest management approaches on the nutritional status of forests, serving as a surrogate for their health and growth.AimsWe assessed the impact of ‘heavy thinning from above’ versus ‘no management’ on the foliar chemistry of old‐growth European beech stands on a calcareous site with cambisol/chromic luvisol soil in Thuringia, Germany.MethodsMacro‐ and micronutrients were analysed by serial foliar analysis of six trees per experimental plot over 13 years (2009–2021). To assess potential differences of foliar chemistry between the two plots and over time, a linear mixed‐effects model was applied.ResultsFoliar concentrations of all macro‐ and micronutrients were not significantly different between the two plots (<jats:italic>p</jats:italic> > 0.05), demonstrating that the management approach had no relevant impact on the nutritional status of beech trees growing at the calcareous site. Furthermore, all foliar concentrations were dynamic over the 13‐year evaluation period. Hence, long‐term forest monitoring is crucial to capture the complex interplay between the trees and environmental conditions.ConclusionsSerial foliar analysis allows for a reliable evaluation of a forest's nutritional status. The results indicate that either regimen, that is, ‘heavy thinning from above’ or ‘no management’, shall not pose any risk in terms of growth and stability. Our results add to the understanding of beech forest dynamics and may provide a further piece for science‐based strategies of sustainable forest management.","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"70 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Nutrition and Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/jpln.202400144","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
BackgroundScience‐based decisions regarding forest management require the knowledge of the impact of thinning regimens on the forests’ vitality and resilience. There is no systematic study analysing the role of forest management approaches on the nutritional status of forests, serving as a surrogate for their health and growth.AimsWe assessed the impact of ‘heavy thinning from above’ versus ‘no management’ on the foliar chemistry of old‐growth European beech stands on a calcareous site with cambisol/chromic luvisol soil in Thuringia, Germany.MethodsMacro‐ and micronutrients were analysed by serial foliar analysis of six trees per experimental plot over 13 years (2009–2021). To assess potential differences of foliar chemistry between the two plots and over time, a linear mixed‐effects model was applied.ResultsFoliar concentrations of all macro‐ and micronutrients were not significantly different between the two plots (p > 0.05), demonstrating that the management approach had no relevant impact on the nutritional status of beech trees growing at the calcareous site. Furthermore, all foliar concentrations were dynamic over the 13‐year evaluation period. Hence, long‐term forest monitoring is crucial to capture the complex interplay between the trees and environmental conditions.ConclusionsSerial foliar analysis allows for a reliable evaluation of a forest's nutritional status. The results indicate that either regimen, that is, ‘heavy thinning from above’ or ‘no management’, shall not pose any risk in terms of growth and stability. Our results add to the understanding of beech forest dynamics and may provide a further piece for science‐based strategies of sustainable forest management.
期刊介绍:
Established in 1922, the Journal of Plant Nutrition and Soil Science (JPNSS) is an international peer-reviewed journal devoted to cover the entire spectrum of plant nutrition and soil science from different scale units, e.g. agroecosystem to natural systems. With its wide scope and focus on soil-plant interactions, JPNSS is one of the leading journals on this topic. Articles in JPNSS include reviews, high-standard original papers, and short communications and represent challenging research of international significance. The Journal of Plant Nutrition and Soil Science is one of the world’s oldest journals. You can trust in a peer-reviewed journal that has been established in the plant and soil science community for almost 100 years.
Journal of Plant Nutrition and Soil Science (ISSN 1436-8730) is published in six volumes per year, by the German Societies of Plant Nutrition (DGP) and Soil Science (DBG). Furthermore, the Journal of Plant Nutrition and Soil Science (JPNSS) is a Cooperating Journal of the International Union of Soil Science (IUSS). The journal is produced by Wiley-VCH.
Topical Divisions of the Journal of Plant Nutrition and Soil Science that are receiving increasing attention are:
JPNSS – Topical Divisions
Special timely focus in interdisciplinarity:
- sustainability & critical zone science.
Soil-Plant Interactions:
- rhizosphere science & soil ecology
- pollutant cycling & plant-soil protection
- land use & climate change.
Soil Science:
- soil chemistry & soil physics
- soil biology & biogeochemistry
- soil genesis & mineralogy.
Plant Nutrition:
- plant nutritional physiology
- nutrient dynamics & soil fertility
- ecophysiological aspects of plant nutrition.