External Control Arm with Synthetic Real-world Data for Comparative Oncology using Single Trial Arm Evidence (ECLIPSE): A Case Study using Lung-MAP S1400I

Alind Gupta, Luke Segars, David Singletary, Johan Liseth Hansen, Kirk Geale, Anmol Arora, Manuel Gomes, Sreeram Ramagopalan, Winson Cheung, Paul Arora
{"title":"External Control Arm with Synthetic Real-world Data for Comparative Oncology using Single Trial Arm Evidence (ECLIPSE): A Case Study using Lung-MAP S1400I","authors":"Alind Gupta, Luke Segars, David Singletary, Johan Liseth Hansen, Kirk Geale, Anmol Arora, Manuel Gomes, Sreeram Ramagopalan, Winson Cheung, Paul Arora","doi":"10.1101/2024.09.10.24313417","DOIUrl":null,"url":null,"abstract":"Single-arm trials supplemented with external comparator arm(s) (ECA) derived from real-world data are sometimes used when randomized trials are infeasible. However, due to data sharing restrictions, privacy/security concerns, or for logistical reasons, patient-level real-world data may not be available to researchers for analysis. Instead, it may be possible to use generative models to construct synthetic data from the real-world dataset that can then be freely shared with researchers. Although the use of generative models and synthetic data is gaining prominence, the extent to which a synthetic data ECA can replace original data while preserving patient privacy in small samples is unclear.\nObjective: To compare the efficacy of nivolumab + ipilimumab combination therapy ('experimental arm') versus nivolumab monotherapy ('control arm') in patients with metastatic non-small cell lung cancer (mNSCLC) using real-world data from two real-world databases ('original ECA'), and synthetic data versions of these datasets ('synthetic ECA'), with the aim of validating synthetic data for use in ECA analysis.\nStudy design: Non-randomized analyses of treatment efficacy comparing the experimental arm to the (i) original ECA and (ii) synthetic ECA, with baseline confounding adjustment.\nData sources: The experimental arm is from the Lung-MAP no-match substudy S1400I (NCT02785952) provided by National Clinical Trials Network (NCTN) in the United States. The real-world data source for the ECA is data from population-based oncology data from the Canadian province of Alberta, and from Nordic countries in Europe, specifically Denmark and Norway.","PeriodicalId":501437,"journal":{"name":"medRxiv - Oncology","volume":"232 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.10.24313417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Single-arm trials supplemented with external comparator arm(s) (ECA) derived from real-world data are sometimes used when randomized trials are infeasible. However, due to data sharing restrictions, privacy/security concerns, or for logistical reasons, patient-level real-world data may not be available to researchers for analysis. Instead, it may be possible to use generative models to construct synthetic data from the real-world dataset that can then be freely shared with researchers. Although the use of generative models and synthetic data is gaining prominence, the extent to which a synthetic data ECA can replace original data while preserving patient privacy in small samples is unclear. Objective: To compare the efficacy of nivolumab + ipilimumab combination therapy ('experimental arm') versus nivolumab monotherapy ('control arm') in patients with metastatic non-small cell lung cancer (mNSCLC) using real-world data from two real-world databases ('original ECA'), and synthetic data versions of these datasets ('synthetic ECA'), with the aim of validating synthetic data for use in ECA analysis. Study design: Non-randomized analyses of treatment efficacy comparing the experimental arm to the (i) original ECA and (ii) synthetic ECA, with baseline confounding adjustment. Data sources: The experimental arm is from the Lung-MAP no-match substudy S1400I (NCT02785952) provided by National Clinical Trials Network (NCTN) in the United States. The real-world data source for the ECA is data from population-based oncology data from the Canadian province of Alberta, and from Nordic countries in Europe, specifically Denmark and Norway.
使用单试验臂证据的外部对照臂与合成真实世界数据进行肿瘤学比较 (ECLIPSE):使用 Lung-MAP S1400I 的案例研究
当随机试验不可行时,有时会采用单臂试验,并辅以从真实世界数据中提取的外部参照臂(ECA)。然而,由于数据共享限制、隐私/安全问题或后勤原因,研究人员可能无法获得患者层面的真实世界数据进行分析。相反,可以使用生成模型从真实世界数据集中构建合成数据,然后与研究人员自由共享。虽然生成模型和合成数据的使用越来越受到重视,但合成数据 ECA 能在多大程度上取代原始数据,同时又能在小样本中保护患者隐私,目前还不清楚:使用来自两个真实世界数据库的真实数据("原始ECA")和这些数据集的合成数据版本("合成ECA"),比较nivolumab + ipilimumab联合疗法("实验臂")与nivolumab单药疗法("对照臂")在转移性非小细胞肺癌(mNSCLC)患者中的疗效,目的是验证合成数据在ECA分析中的应用:研究设计:非随机疗效分析,比较实验组与(i) 原始 ECA 和 (ii) 合成 ECA,并对基线混杂因素进行调整:实验组数据来自美国国家临床试验网(NCTN)提供的 Lung-MAP 无匹配子研究 S1400I(NCT02785952)。ECA 的真实世界数据来源于加拿大阿尔伯塔省和欧洲北欧国家(特别是丹麦和挪威)的人口肿瘤学数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信