Dissecting reversible and irreversible single cell state transitions from gene regulatory networks

Daniel Ramirez, Mingyang Lu
{"title":"Dissecting reversible and irreversible single cell state transitions from gene regulatory networks","authors":"Daniel Ramirez, Mingyang Lu","doi":"10.1101/2024.08.30.610498","DOIUrl":null,"url":null,"abstract":"Understanding cell state transitions and their governing regulatory mechanisms remains one of the fundamental questions in biology. We develop a computational method, state transition inference using cross-cell correlations (STICCC), for predicting reversible and irreversible cell state transitions at single-cell resolution by using gene expression data and a set of gene regulatory interactions. The method is inspired by the fact that the gene expression time delays between regulators and targets can be exploited to infer past and future gene expression states. From applications to both simulated and experimental single-cell gene expression data, we show that STICCC-inferred vector fields capture basins of attraction and irreversible fluxes. By connecting regulatory information with systems' dynamical behaviors, STICCC reveals how network interactions influence reversible and irreversible state transitions. Compared to existing methods that infer pseudotime and RNA velocity, STICCC provides complementary insights into the gene regulation of cell state transitions.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.30.610498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding cell state transitions and their governing regulatory mechanisms remains one of the fundamental questions in biology. We develop a computational method, state transition inference using cross-cell correlations (STICCC), for predicting reversible and irreversible cell state transitions at single-cell resolution by using gene expression data and a set of gene regulatory interactions. The method is inspired by the fact that the gene expression time delays between regulators and targets can be exploited to infer past and future gene expression states. From applications to both simulated and experimental single-cell gene expression data, we show that STICCC-inferred vector fields capture basins of attraction and irreversible fluxes. By connecting regulatory information with systems' dynamical behaviors, STICCC reveals how network interactions influence reversible and irreversible state transitions. Compared to existing methods that infer pseudotime and RNA velocity, STICCC provides complementary insights into the gene regulation of cell state transitions.
从基因调控网络剖析可逆和不可逆的单细胞状态转换
了解细胞状态转换及其调控机制仍然是生物学的基本问题之一。我们开发了一种名为 "利用跨细胞相关性的状态转换推断(STICCC)"的计算方法,利用基因表达数据和一组基因调控相互作用,以单细胞分辨率预测可逆和不可逆的细胞状态转换。该方法的灵感来自于可以利用调控因子和靶标之间的基因表达时间延迟来推断过去和未来的基因表达状态。通过对模拟和实验单细胞基因表达数据的应用,我们发现 STICCC 推断的矢量场可以捕捉到吸引盆地和不可逆的通量。通过将调控信息与系统的动态行为联系起来,STICCC 揭示了网络相互作用如何影响可逆和不可逆的状态转换。与现有的推断伪时间和 RNA 速度的方法相比,STICCC 对细胞状态转换的基因调控提供了补充性的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信