Revisit the Partial Coloring Method: Prefix Spencer and Sampling

Dongrun Cai, Xue Chen, Wenxuan Shu, Haoyu Wang, Guangyi Zou
{"title":"Revisit the Partial Coloring Method: Prefix Spencer and Sampling","authors":"Dongrun Cai, Xue Chen, Wenxuan Shu, Haoyu Wang, Guangyi Zou","doi":"arxiv-2408.13756","DOIUrl":null,"url":null,"abstract":"As the most powerful tool in discrepancy theory, the partial coloring method\nhas wide applications in many problems including the Beck-Fiala problem and\nSpencer's celebrated result. Currently, there are two major algorithmic methods\nfor the partial coloring method: the first approach uses linear algebraic\ntools; and the second is called Gaussian measure algorithm. We explore the\nadvantages of these two methods and show the following results for them\nseparately. 1. Spencer conjectured that the prefix discrepancy of any $\\mathbf{A} \\in\n\\{0,1\\}^{m \\times n}$ is $O(\\sqrt{m})$. We show how to find a partial coloring\nwith prefix discrepancy $O(\\sqrt{m})$ and $\\Omega(n)$ entries in $\\{ \\pm 1\\}$\nefficiently. To the best of our knowledge, this provides the first partial\ncoloring whose prefix discrepancy is almost optimal. However, unlike the\nclassical discrepancy problem, there is no reduction on the number of variables\n$n$ for the prefix problem. By recursively applying partial coloring, we obtain\na full coloring with prefix discrepancy $O(\\sqrt{m} \\cdot \\log\n\\frac{O(n)}{m})$. Prior to this work, the best bounds of the prefix Spencer\nconjecture for arbitrarily large $n$ were $2m$ and $O(\\sqrt{m \\log n})$. 2. Our second result extends the first linear algebraic approach to a\nsampling algorithm in Spencer's classical setting. On the first hand, Spencer\nproved that there are $1.99^m$ good colorings with discrepancy $O(\\sqrt{m})$.\nHence a natural question is to design efficient random sampling algorithms in\nSpencer's setting. On the other hand, some applications of discrepancy theory,\nprefer a random solution instead of a fixed one. Our second result is an\nefficient sampling algorithm whose random output has min-entropy $\\Omega(n)$\nand discrepancy $O(\\sqrt{m})$. Moreover, our technique extends the linear\nalgebraic framework by incorporating leverage scores of randomized matrix\nalgorithms.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the most powerful tool in discrepancy theory, the partial coloring method has wide applications in many problems including the Beck-Fiala problem and Spencer's celebrated result. Currently, there are two major algorithmic methods for the partial coloring method: the first approach uses linear algebraic tools; and the second is called Gaussian measure algorithm. We explore the advantages of these two methods and show the following results for them separately. 1. Spencer conjectured that the prefix discrepancy of any $\mathbf{A} \in \{0,1\}^{m \times n}$ is $O(\sqrt{m})$. We show how to find a partial coloring with prefix discrepancy $O(\sqrt{m})$ and $\Omega(n)$ entries in $\{ \pm 1\}$ efficiently. To the best of our knowledge, this provides the first partial coloring whose prefix discrepancy is almost optimal. However, unlike the classical discrepancy problem, there is no reduction on the number of variables $n$ for the prefix problem. By recursively applying partial coloring, we obtain a full coloring with prefix discrepancy $O(\sqrt{m} \cdot \log \frac{O(n)}{m})$. Prior to this work, the best bounds of the prefix Spencer conjecture for arbitrarily large $n$ were $2m$ and $O(\sqrt{m \log n})$. 2. Our second result extends the first linear algebraic approach to a sampling algorithm in Spencer's classical setting. On the first hand, Spencer proved that there are $1.99^m$ good colorings with discrepancy $O(\sqrt{m})$. Hence a natural question is to design efficient random sampling algorithms in Spencer's setting. On the other hand, some applications of discrepancy theory, prefer a random solution instead of a fixed one. Our second result is an efficient sampling algorithm whose random output has min-entropy $\Omega(n)$ and discrepancy $O(\sqrt{m})$. Moreover, our technique extends the linear algebraic framework by incorporating leverage scores of randomized matrix algorithms.
重温局部着色法:前缀斯宾塞和取样
作为差异理论中最强大的工具,部分着色法在许多问题中都有广泛的应用,包括贝克-菲亚拉问题和斯宾塞的著名结果。目前,部分着色法主要有两种算法:第一种方法使用线性代数工具;第二种方法称为高斯度量算法。我们探讨了这两种方法的优势,并分别给出了以下结果。1.斯宾塞猜想,任何 $\mathbf{A} 的前缀差异(prefix discrepancy\in\{0,1\}^{m \times n}$ 是 $O(\sqrt{m})$。我们展示了如何高效地找到前缀差异为 $O(\sqrt{m})$、且 $Omega(n)$ 条目在 ${ \pm 1\}$ 中的部分着色。据我们所知,这是第一个前缀差异几乎达到最优的局部着色方法。然而,与经典的差异问题不同,前缀问题的变量数量$n$并没有减少。通过递归应用部分着色,我们得到了前缀差异为 $O(\sqrt{m} 的完整着色。\cdot \log\frac{O(n)}{m})$ 。在这项工作之前,对于任意大的 $n$ 前缀斯宾塞猜想的最佳边界是 $2m$ 和 $O(\sqrt{m\log n})$。我们的第二个结果将第一个线性代数方法扩展为斯宾塞经典设置中的取样算法。首先,斯宾塞证明了有 1.99^m$ 的良好着色,且差异为 $O(\sqrt{m})$。因此,一个自然的问题是在斯宾塞的设置中设计高效的随机抽样算法。另一方面,差异理论的某些应用偏好随机解而不是固定解。我们的第二个结果是一种高效的抽样算法,它的随机输出具有最小熵 $\Omega(n)$和差异 $O(\sqrt{m})$。此外,我们的技术还扩展了线性代数框架,纳入了随机矩阵算法的杠杆分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信