Quantum Speedups for Approximating the John Ellipsoid

Xiaoyu Li, Zhao Song, Junwei Yu
{"title":"Quantum Speedups for Approximating the John Ellipsoid","authors":"Xiaoyu Li, Zhao Song, Junwei Yu","doi":"arxiv-2408.14018","DOIUrl":null,"url":null,"abstract":"In 1948, Fritz John proposed a theorem stating that every convex body has a\nunique maximal volume inscribed ellipsoid, known as the John ellipsoid. The\nJohn ellipsoid has become fundamental in mathematics, with extensive\napplications in high-dimensional sampling, linear programming, and machine\nlearning. Designing faster algorithms to compute the John ellipsoid is\ntherefore an important and emerging problem. In [Cohen, Cousins, Lee, Yang COLT\n2019], they established an algorithm for approximating the John ellipsoid for a\nsymmetric convex polytope defined by a matrix $A \\in \\mathbb{R}^{n \\times d}$\nwith a time complexity of $O(nd^2)$. This was later improved to\n$O(\\text{nnz}(A) + d^\\omega)$ by [Song, Yang, Yang, Zhou 2022], where\n$\\text{nnz}(A)$ is the number of nonzero entries of $A$ and $\\omega$ is the\nmatrix multiplication exponent. Currently $\\omega \\approx 2.371$ [Alman, Duan,\nWilliams, Xu, Xu, Zhou 2024]. In this work, we present the first quantum\nalgorithm that computes the John ellipsoid utilizing recent advances in quantum\nalgorithms for spectral approximation and leverage score approximation, running\nin $O(\\sqrt{n}d^{1.5} + d^\\omega)$ time. In the tall matrix regime, our\nalgorithm achieves quadratic speedup, resulting in a sublinear running time and\nsignificantly outperforming the current best classical algorithms.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 1948, Fritz John proposed a theorem stating that every convex body has a unique maximal volume inscribed ellipsoid, known as the John ellipsoid. The John ellipsoid has become fundamental in mathematics, with extensive applications in high-dimensional sampling, linear programming, and machine learning. Designing faster algorithms to compute the John ellipsoid is therefore an important and emerging problem. In [Cohen, Cousins, Lee, Yang COLT 2019], they established an algorithm for approximating the John ellipsoid for a symmetric convex polytope defined by a matrix $A \in \mathbb{R}^{n \times d}$ with a time complexity of $O(nd^2)$. This was later improved to $O(\text{nnz}(A) + d^\omega)$ by [Song, Yang, Yang, Zhou 2022], where $\text{nnz}(A)$ is the number of nonzero entries of $A$ and $\omega$ is the matrix multiplication exponent. Currently $\omega \approx 2.371$ [Alman, Duan, Williams, Xu, Xu, Zhou 2024]. In this work, we present the first quantum algorithm that computes the John ellipsoid utilizing recent advances in quantum algorithms for spectral approximation and leverage score approximation, running in $O(\sqrt{n}d^{1.5} + d^\omega)$ time. In the tall matrix regime, our algorithm achieves quadratic speedup, resulting in a sublinear running time and significantly outperforming the current best classical algorithms.
逼近约翰椭球体的量子提速
1948 年,弗里茨-约翰提出了一个定理,指出每个凸体都有一个唯一的最大体积内切椭圆体,即约翰椭圆体。约翰椭圆体已成为数学的基础,在高维采样、线性规划和机器学习中有着广泛的应用。因此,设计更快的算法来计算约翰椭圆是一个重要的新兴问题。在[Cohen, Cousins, Lee, Yang COLT2019]一文中,他们建立了一种算法,用于近似由矩阵 $A \ in \mathbb{R}^{n \times d}$定义的非对称凸多胞形的约翰椭圆体,时间复杂度为 $O(nd^2)$。后来[Song, Yang, Yang, Zhou 2022]将其改进为$O(text{nnz}(A) + d^\omega)$,其中$text{nnz}(A)$是$A$的非零条目数,$\omega$是矩阵乘法指数。目前,$\omega 约为 2.371$ [Alman, Duan,Williams, Xu, Xu, Zhou 2024]。在这项工作中,我们提出了第一个量子算法,利用光谱逼近和杠杆分数逼近量子算法的最新进展计算约翰椭球体,运行时间为 $O(\sqrt{n}d^{1.5}+d^\omega)$。在高矩阵体系中,我们的算法实现了二次加速,从而达到了亚线性运行时间,显著优于当前最好的经典算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信