Improving Lagarias-Odlyzko Algorithm For Average-Case Subset Sum: Modular Arithmetic Approach

Antoine Joux, Karol Węgrzycki
{"title":"Improving Lagarias-Odlyzko Algorithm For Average-Case Subset Sum: Modular Arithmetic Approach","authors":"Antoine Joux, Karol Węgrzycki","doi":"arxiv-2408.16108","DOIUrl":null,"url":null,"abstract":"Lagarias and Odlyzko (J.~ACM~1985) proposed a polynomial time algorithm for\nsolving ``\\emph{almost all}'' instances of the Subset Sum problem with $n$\nintegers of size $\\Omega(\\Gamma_{\\text{LO}})$, where\n$\\log_2(\\Gamma_{\\text{LO}}) > n^2 \\log_2(\\gamma)$ and $\\gamma$ is a parameter\nof the lattice basis reduction ($\\gamma > \\sqrt{4/3}$ for LLL). The algorithm\nof Lagarias and Odlyzko is a cornerstone result in cryptography. However, the\ntheoretical guarantee on the density of feasible instances has remained\nunimproved for almost 40 years. In this paper, we propose an algorithm to solve ``almost all'' instances of\nSubset Sum with integers of size $\\Omega(\\sqrt{\\Gamma_{\\text{LO}}})$ after a\nsingle call to the lattice reduction. Additionally, our argument allows us to\nsolve the Subset Sum problem for multiple targets while the previous approach\ncould only answer one target per call to lattice basis reduction. We introduce\na modular arithmetic approach to the Subset Sum problem. The idea is to use the\nlattice reduction to solve a linear system modulo a suitably large prime. We\nshow that density guarantees can be improved, by analysing the lengths of the\nLLL reduced basis vectors, of both the primal and the dual lattices\nsimultaneously.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lagarias and Odlyzko (J.~ACM~1985) proposed a polynomial time algorithm for solving ``\emph{almost all}'' instances of the Subset Sum problem with $n$ integers of size $\Omega(\Gamma_{\text{LO}})$, where $\log_2(\Gamma_{\text{LO}}) > n^2 \log_2(\gamma)$ and $\gamma$ is a parameter of the lattice basis reduction ($\gamma > \sqrt{4/3}$ for LLL). The algorithm of Lagarias and Odlyzko is a cornerstone result in cryptography. However, the theoretical guarantee on the density of feasible instances has remained unimproved for almost 40 years. In this paper, we propose an algorithm to solve ``almost all'' instances of Subset Sum with integers of size $\Omega(\sqrt{\Gamma_{\text{LO}}})$ after a single call to the lattice reduction. Additionally, our argument allows us to solve the Subset Sum problem for multiple targets while the previous approach could only answer one target per call to lattice basis reduction. We introduce a modular arithmetic approach to the Subset Sum problem. The idea is to use the lattice reduction to solve a linear system modulo a suitably large prime. We show that density guarantees can be improved, by analysing the lengths of the LLL reduced basis vectors, of both the primal and the dual lattices simultaneously.
改进平均情况下子集和的 Lagarias-Odlyzko 算法:模块化算术方法
Lagarias 和 Odlyzko(J.~ACM~1985)提出了一种多项式时间算法,用于解决大小为$Omega(\Gamma_{text{LO}})$的$n$整数的子集和问题的 "几乎所有 "实例、其中,$\log_2(\Gamma_{text{LO}}) > n^2 \log_2(\gamma)$,$\gamma$ 是网格基还原的参数(对于 LLL,$\gamma > \sqrt{4/3}$)。拉加里亚斯和奥德利兹科的算法是密码学的基石成果。然而,近 40 年来,关于可行实例密度的理论保证一直没有得到改进。在本文中,我们提出了一种算法,只需调用一次网格还原,就能求解大小为 $\Omega(\sqrt{\Gamma_\{text{LO}}) $ 的 "几乎所有 "子集和实例。此外,我们的论证允许我们解决多个目标的子集和问题,而之前的方法每次调用网格基还原只能解决一个目标。我们为子集和问题引入了一种模块算术方法。我们的想法是利用网格还原来求解一个线性系统,该系统以一个适当大的素数为模数。我们发现,通过同时分析原始网格和对偶网格的 LLLL 简化基向量的长度,密度保证可以得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信